UNIVERSITI TEKNOLOGI MARA

STRUCTURAL STUDIES OF TRANSIENT RECEPTOR POTENTIAL CHANNELS (TRPs) USING MOLECULAR MODELING AND DYNAMIC SIMULATION

WAN DALILA BINTI WAN CHIK

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Pharmacy

April 2019

ABSTRACT

Transient Receptor Potential Canonical (TRPC) channel was the first group of TRP homologs that was cloned in mammals. The channel consists of seven subfamily members in this family. TRPC4 channels are nonselective cation channels permeable to Ca^{2+} that are expressed in various organs and cell types including numerous types of neurons, cardiovascular system, skeletal muscle cells, kidney, and immune cells. TRPC4 channels assemble into a tetrameric structure in the plasma membrane. The S4-S5 linker of TRPC4 has been shown to regulate the open-close of the channel by interacting with the S6 helix. Previous homology models that were built based on the potassium channel structure predicted inter-domain interactions were formed by G503 and the S623 between the linker with the S6 helix. Mutagenesis experiments of TRPC4 and TRPC5 supported that the mutation of the conserved glycine impaired the interaction, which resulted to the channel opening, and causing cell death due to the influx of Ca²⁺. In this work, a tetrameric model of TRPC4 was built based on TRPV1 EM structure to study the role of S4-S5 linker in the channel gating. Molecular dynamics simulations were employed to describe the dynamics of the structure in a lipid bilayer environment. The simulations of both TRPC4 and TRPV1 native structures support the proposed interactions between the S4-S5 linker and the S6 helix. However, it was observed that D515 in the linker region formed hydrogen bonds with S623 during the simulation time. Similarly, in the TRPV1 simulations, D576 formed stable interactions with T685 in the S6 helix. Interestingly, simulations of TRPC4_{G503S} mutant caused the selectivity filter region of the channel to open wider, while TRPC4 $_{G503/S623A}$ mutant resulted to the channel conformation back as the native structure. Additionally, S508 and Y624 from S4-S5 linker and S6 helix formed hydrogen bonds during those mutant simulations. The thesis findings suggest the predicted residues in S4-S5 linker play a role in the channel conformation and function.

ACKNOWLEDGEMENT

All praise is due to Allah, the Creator and Sustainer of the Universe for guiding me to conceptualize, develop and complete the thesis. Indeed, without His Help and Will, nothing is accomplished.

I would like to express my deep and sincere gratitude to my main supervisor, Dr. Siti Azma Jusoh, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia. Her wide knowledge and her logical way of thinking have been of great value for me. Her understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I am deeply grateful to the Bioinformatic Units members, Dr. Ruzianisra Mohamed, Pn. Zafirah Liyana Abdullah, Nurul Azira Ismail, Mohd Yasser Nayan, Mohd. Naim Fadhli and Sakinah Mat Zin. Their valuable advice and friendly help have made me accomplished my extensive discussions around my work and interesting explorations in operations for this study.

I wish to express my warm and sincere thanks to all the lecturers in Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Malaysia, for their constructive comments and their important supports throughout this work. Charismatic and intellectual academicians of Universiti Teknologi MARA, Puncak Alam Campus have helped me in understanding clearly the concept of research, education and its methodology. Their idea and concepts have had a remarkable influence on my entire work and that has been most worthwhile, when comprehending a concept and conducting research as my goal to be a professional researcher at an academic or research-oriented organization in the future.

I owe my loving thanks especially to my beloved husband, Muhammad Fakharur Razi Abdul Kadir and my lovely daughter, Safiyyah Maisarah. They gave me untiring help during my difficult moments. Their kind support and love have been of great value in this study. My most sincere gratitude is due to my family and my family in-laws. Without their encouragement and understanding, it would have been impossible for me to finish this work.

The financial support of the Universiti Teknologi MARA Malaysia and MyBrain15 from Ministry of Higher Education Malaysia is gratefully acknowledged.

TABLE OF CONTENTS

	Page
COMFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	Х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Research Objectives	4
1.4 Scope and Limitation of the Study	4
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Membrane Proteins	6
2.1.1 Classification of Membrane Proteins	6
2.1.2 Integral Helical Membrane Proteins	8
2.1.3 Functions of Integral Helical Membrane Proteins	10
2.1.3.1 G-Protein-Coupled Receptors (GPCRs)	10
2.1.3.2 Active Transport	12
2.1.3.3 Channels and Pores	13
2.2 Transient Receptor Potential (TRP) Ion Channel	15
2.2.1 Classification of TRP Ion Channel	16
2.2.2 Structural Topology of TRPs Ion Channel	19
2.2.3 Transmembrane (S1-S6) Domains	22

2.2.4 S4-S5 Linker Region	24
2.3 TRPC Channel	27
2.3.1 The Activation and Physiological Function of TRPC	27
2.3.2 TRPC4 Ion Channel in Disease	30
2.4 Membrane Lipid	31
2.4.1 Phospholipids Classification	32
2.4.2 Phospholipids Characteristic	33
2.5 Molecular Modeling and Dynamics Simulations	34
2.5.1 Homology Modeling	35
2.5.2 Molecular Dynamics (MD)	36
2.5.2.1 Molecular Force Fields	39
2.5.2.2 Periodic Boundary Condition	41
2.5.2.3 Treatment of Long Range Interactions	42
2.5.2.4 Simulation in the Isothermal-Isobaric Ensemble	43
CHAPTER THREE: MATERIALS AND METHODOLOGY	44
3.1 Introduction	44
3.2 Methodology	45
3.2.1 Sequence Analyses	45
3.2.1.1 Sequence and Template Retrieval	45
3.2.1.2 Transmembrane Protein Prediction by TOPCONS	46
3.2.1.3 Secondary Structure Prediction by I-TASSER	46
3.2.1.4 Multiple Sequence Alignment	47
3.2.2 Homology Modeling	47
3.2.2.1 Model Development by Modeller	47
3.2.2.2 Structure Evaluation and Assessment	48
3.2.3 Molecular Dynamic Simulations of Wild-Type mTRPC4 and	49
rTRPV1	
3.2.3.1 Protein Sample Preparation	49
3.2.3.2 Embedding of Protein in Lipid Bilayer	50
3.2.3.3 Water Solvation and Ions Addition	50
3.2.3.4 Energy Minimization	51
3.2.3.5 Position Restraint Equilibration	51