DIGITAL SEGMENTATION OF SKIN DISEASES

HADZLI HASHIM RAZALI ABDUL HADI

MARCH 2004

Contents

Surat	Tawaran	1	Ì	
Surat Tempoh Lanjutan				
Surat Penyerahan Laporan				
Proje	v			
Ackn	owledgn	nents	vi	
Conte	ents		vii	
Illust	rations		viii	
Absti	xi			
СНА	PTER 1	: INTRODUCTION		
1.1	Introd		Ì	
CHA		2: THEORETICAL BACKGROUND		
2.1		Surface	4	
2.2			7	
2.3	Optica	al Properties of a Normal Skin	11	
2.4	Light	13		
	2.4.1	Color Spaces	15	
		2.4.1.1 RGB and Gray	16	
		2.4.1.2 rgb	17	
		2.4.1.3 CMY	18	
		$2.4.1.4 YC_bC_r$	19	
		2.4.1.5 HSV	19	
		Color Histograms	21	
2.5		atological Digital Imaging	23 25	
2.6		Pre-processing		
2.7	Filteri	25		
	2.7.1	Low Pass Gaussian Filter	26	
	2.7.2	Motion Filter	27	
• •	2.7.3	Median Filter	28	
2.8	Statist	30		
	2.8.1	Statistical Hypothesis	30	
	2.8.2	The Two-Sample t-Test	30	

СНА	PTER 3: METHODOLODY			
3.1	Instruments and Measurement Procedures			
3.2	Clinical Data Images			
3.3	Digital Image Processing	35		
	3.3.1 Pre-processing	35		
	3.3.2 Median Filtering	36		
	3.3.3 Processing	36		
3.4	Inference Tests	37		
СНА	PTER 4: DATA COLLECTION			
4.1	Introduction	39		
4.2	DOP and Image Statistics	39		
4.3	Clinical Data Images	42		
4.4	Processing	45		
4.5	Histograms	46		
CHA	APTER 5: RESULTS AND DISCUSSION			
5.1	Reference Indices	50		
5.2	Histograms	50		
5.3	Clustering Plots	51		
5.4	Error Plots	53		
5.5	Inference Tests	54		
CHA	APTER 6: CONCLUSION			
6.1	Conclusion	58		
6.2	Future Works	58		
REF	ERENCES	60		
APP	ENDIX	71		

viii

Abstract

RGB colour variegations are useful features used by the domain's experts in their morphological learning method for skin disease classification. With the advancement of the computer vision technology, not only these features can be quantified in the digital image restoration and enhancement but also can be used as input parameters of an intelligent diagnostic system. In this report, several psoriasis lesion group are been studied for grayscale color features extraction. The experimental work involved clinical guttate lesion images where they are processed to produce the average Gaussian mean and standard deviation indices using the conventional algorithm. Normal and differential quantified indices gained under controlled environment are then mapped with another set of images from the same and other groups of the psoriasis lesion. The grayscale clustering plots together with each scale index distance from the reference indices are observed and analyzed. Finally, inference statistical tests are applied to conclude the findings. Outcome of the results show only guttate and erythroderma are distinguishable in grayscale mode.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Dermatology is about medical study on skin diseases or lesions. The fundamental concept of learning in dermatology is by looking at the skin lesion and tries to match its appearance to the closest appearance photo from a library text [1]. Then, morphological learning method is applied and an experienced dermatologist will use differential diagnosis steps to identify the disease. However, both of these methods sometimes still need conventional clinical photos or images from reference text as guidance for the diagnosis. Since lesion presentation also includes color variation and variegation, therefore color difference conveys important diagnostic information for a lesion. Their quantitative measurements are very helpful when investigating the lesion especially when early diagnosis is crucial as in detecting malignant melanoma [2]. Besides that, color information might also be useful in discriminating different types of papulosquamos lesion which includes psoriasis.

This work is focused on psoriasis skin lesion's images. Psoriasis is a chronic scaling disease of the papulosquamos diseases group of skin disorders that comes in different forms and varying levels of severity. Psoriasis is a condition that affects human skin and causes thick red marks that look like scales to form. The thick scaling is probably due to an increase in the number of skin cells. It is prevalence worldwide effecting 1% to 2% and more than 4.5 million of the United States (US) population and 3% of the Malaysian population. In the US, on