UNIVERSITI TEKNOLOGI MARA

DESIGN OF WIDE BAND UNDERWATER ANTENNA USING BUFFER LAYER STRUCTURE FOR UNDERWATER COMMUNICATION

HANISAH BINTI MOHD ZALI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Electrical Engineering)

College of Engineering

February 2023

ABSTRACT

Utilization of electromagnetic wave (EMW) in underwater wireless communication systems is being investigated as the alternative to the conventional acoustic-based system, in order to provide higher data rate. However, underwater EMW systems has the drawback of the high signal attenuation, effecting the signal quality and data rate. In underwater environment, conventional antennas will perform poorly since they have reduced efficiency and poor near-field radiation properties. Hence, a proper optimized antenna design is required to enhance the antenna performances underwater. Existing works on the development of the underwater antennas mostly focus on the development on narrowband antennas operating at low frequencies. Moreover, most studies on EMW propagation in underwater investigate only the propagation of narrowband signal. While utilization of wider signal bandwidth permits a higher data rate, there are minimal study to investigate the wideband antenna design and propagation characteristics. The main aim of this study is to develop a wideband patch antenna, integrated with buffer layer configuration for enhanced underwater transmission. Accordingly, the present study investigates the parameters of a buffer layer in enhancing the proposed wideband underwater antenna performance, with experimental validation. For the buffer layer, this study proposes the utilization of a material with relative permittivity between the atmosphere and water, to enhance the antenna performance. Furthermore, the present study also analyses the wideband electromagnetic wave path loss in the underwater environment through measurement and validation with numerical evaluation. Two prototypes of underwater antenna were presented in this study which is presented as Antenna Design 1 and Antenna Design 2. Antenna Design 1 is the initial design consist of a circular patch antenna integrated with buffer layer structure. The buffer layer structure was design using the proposed solution consist of (7:1) of a mixture between methyl acetate and distilled water. The improvements of the antenna in term of its bandwidth, gain and S₁₁ was presented by Antenna Design 2 due to its fully optimized antenna parameters such as the optimization on the antenna size and buffer material. Hence, Antenna Design 2 was chosen as the final proposed underwater antenna design due to its beneficial of achieving Ultra-Wideband (UWB) frequency, minimized in size, better gain and S_{11} . From the results, it is demonstrated that the proposed antenna yielded a good return loss performance when operating underwater, nearly -10 dB from 380 MHz to 1000 MHz, occupying approximately 600 MHz bandwidth. This indicates the effectiveness of using the proposed buffer layer in the underwater antenna design to retain a good performance over a wide bandwidth. Next, the proposed antenna was used in the analysis of wideband path loss in underwater. The measurement results indicated that the wideband path loss at 2m distance underwater was approximately 65 dB, which is lower than its narrowband counterpart, marking 70 dB at the same distance. The result is verified by numerical simulations, with approximately 3 dB modelling error over the wide bandwidth. This reduction of path loss per distance is attributed to the frequency diversity effects brought by the wide frequency bandwidth. Overall, this study successfully proved that the proposed antenna design integrated with buffer layer structure was able to enhance the antenna performances in underwater environment over a wide signal bandwidth. In addition, the results presented from the wideband path loss measurement may facilitate improvements in wireless underwater communications using electromagnetic waves.

ACKNOWLEDGEMENT

All praise is to Allah S.W.T, The Most Gracious and The Most Merciful that has given me the strength, ability and patient to complete this PhD Project. A special gratitude, appreciation and thankful to my project supervisor, Associate Professor Ts. Dr. Idnin Pasya Bin Ibrahim whose contribution in simulating, measuring, suggestions and encouragement, helped me coordinate my project to make sure that I am getting the most important information about my research project. More appreciation for my late supervisor, in memory, the late Associated Professor Ts. Dr Mohd Tarmizi Bin Ali for his valuable advice discussions and willing in sharing the knowledge towards for the completion and success of this project.

Secondly, I would like to take this opportunity to thanks my co-supervisor Dr Hasimah Binti Baba who had actually provided me with all the valuable information and providing me the needed device to fulfil this project requirement. Next, A deepest appreciation to the other co-supervisor Ts. Dr Nurul Azlina Binti Ramli for her guidance for me to undergo my PhD Project and always support and give me a spirit to finish what I have done.

Then, for all the technicians from Microwave Technology Centre Laboratory, thank you for help me in conducting measurement setup and assist me using VNA. Do not forget also to all staffs and members from Antenna Research Centre (ARC) who always sharing information and the valuable knowledge.

Finally, to my beloved husband, Mohd Akmal Bin Ramli and my family who always supports me to give a full commitment to finish my study.

May Allah S.W.T bless and reward them for their generosity.

TABLE OF CONTENTS

CON	FIRMA	ATION BY PANEL OF EXAMINERS	ii		
AUT	HOR'S	DECLARATION	iii		
ABS'	ГRАСТ	,	iv		
ACK	NOWL	EDGEMENT	v		
TAB	LE OF	CONTENTS	vi		
LIST	OF TA	ABLES	xi		
LIST	OF FI	GURES	xiii		
LIST	OF SY	MBOLS	xix		
LIST	OF AF	BREVIATIONS	xxii		
CHA	PTER	ONE INTRODUCTION	1		
1.1	Introduction				
1.2	Research Background 1				
1.3	Problem Statement				
	1.3.1	Conventional antennas are not suitable to operate in	n underwater		
		environment due to poor efficiency and near-field radiation	on properties.		
			5		
	1.3.2	Existing designs of underwater antennas are not suitable a	and optimized		
		for wideband signal	5		
	1.3.3	Existing data on EMW propagation mechanism and its	properties are		
		mostly based on narrowband signal propagation without t	he analysis of		
		the wideband characteristics.	5		
1.4	Objec	tives of the Research	6		
1.5	Scope	and Limitation of Work	6		
1.6	Thesis	s Organization	9		
1.7	Concl	usion	10		
СНА	PTER '	FWO LITERATURE REVIEW	11		
2.1	Introd	uction	11		

Introduction 2.1

2.2	Ultra-	Wideband (UWB) Communication System	11
	2.2.1	The History of UWB System	15
	2.2.2	Basic Theory of UWB	16
	2.2.3	Advantages and Disadvantages of UWB System	17
	2.2.4	UWB Applications	18
2.3	Under	rwater Communication Technology	19
	2.3.1	Underwater Acoustic Communication System	19
	2.3.2	Underwater Optical Communication System	21
	2.3.3	Underwater Radio Frequency (RF) Communication System	em 22
	2.3.4	Comparison between three wireless underwater of	communication
		technologies.	24
	2.3.5	Frequency Band used for Underwater Communication	25
2.4	Anten	na Technology	26
	2.4.1	Underwater Antenna Design	27
	2.4.2	Ultra-Wide Band (UWB) Microstrip Patch Antenna	29
2.5	The D	Development of Underwater Antenna using the Integration of	of Buffer Layer
	Struct	ture Technique	31
2.6	The sy	ynthesizing of the dielectric materials	34
2.7	The T	heory of Propagation Electromagnetic Wave (EMW)	35
	2.7.1	Introduction Electromagnetic Wave (EMW)	35
	2.7.2	Plane wave properties	37
	2.7.3	Plane wave in Lossy Media	39
2.8	Water	Parameters that Affected the Electromagnetic Propagation	Performances
	Under	rwater	40
	2.8.1	Permittivity	41
	2.8.2	Conductivity	41
2.9	The R	Related Research on the Propagation of the EMW Underwar	ter 42
2.10	Conclusion 4		

CHAI	PTER THREE RESEARCH METHODOLOGY ON UNDERWAT	ſER
ANTE	ENNA INTEGRATED WITH BUFFER LAYER STRUCTURE	46
3.1	Introduction	46
3.2	Flowchart of the Overall Research Activities	46
3.3	Theory Antenna Parameters	11