UNIVERSITI TEKNOLOGI MARA

SYNTHESIS AND CHARACTERIZATION OF BISMUTH MAGNETIC MICROSWIMMER FOR DEGRADATION OF POLYSTYRENE MICROPLASTICS

KHAIRUNNISA BINTI KHAIRUDIN

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

College of Engineering

January 2023

ABSTRACT

Microplastics ranged from 1 μ m to 5 mm but the occurrence of smaller microplastics (micron-sized) has become a major concern due to their larger surface area, which can accumulate and transport other contaminants such as heavy metals and chemical additives and pose potential risks to humans and marine systems. However, microplastics with sizes ranging from 1 µm to 10 µm were found in water treatment plant effluent, indicating that they did not settle through sedimentation and passed through the filtration system. Light-driven microswimmers are one of the promising new technologies for microscale environmental remediation. Hence, this study proposes photocatalytic degradation of 1.1 µm polystyrene latex (PSL) beads microplastics using bismuth magnetic microswimmer. In this study the bismuth magnetic microswimmer was synthesized via facile hydrothermal method and the microswimmer's motion and photocatalytic degradation of PSL were performed under visible light in an aqueous solution. The self-propelled bismuth magnetic microswimmer with average particle size of 3.913 µm was observed to collect the PSL microplastics at a reasonable speed of 3.0498 µm/s in 5 wt% H₂O₂ under low light intensity (i.e., 7.02×10^{-2} W/cm²) white light irradiation. Moreover, the mesoporous bismuth magnetic microswimmer with surface area of 5.4775 m²/g successfully degraded 64% PSL microplastics in 120 hours. Furthermore, the decrease in total organic carbon concentration in the PSL solution and the concentration of carbon dioxide (CO₂) produced prove demineralization of the PSL microplastics into CO₂ and water molecule. In addition, the appearance of carbonyl and hydroxyl functional group peaks in the Fourier Transform Infrared (FTIR) spectrum of degraded PSL provides mechanistic insight into the photocatalytic degradation of the PSL microplastics. The stability of the bismuth magnetic microswimmer was relatively good, with 73 %, 65 %, 60 %, and 40 % PSL microplastics degraded from first cycle to last cycle. Very low concentration of Bi³⁺ (i.e., 0.0327-0.0712 mg/L) and Fe³⁺ (i.e., 0.0200-0.0633 mg/L) was observed after each cycle of bismuth magnetic microswimmer, which is environmentally safe. Finally, it is economically feasible to implement the photocatalytic degradation of the PSL microplastics using bismuth magnetic microswimmer since the microswimmer can be recycled.

ACKNOWLEDGEMENT

Alhamdulillah. Praise be to Allah S.W.T for giving me the opportunity to pursue my master's degree and complete the interesting and challenging journey successfully. My gratitude and thanks go to my supervisors Assoc. Prof. Ir. Dr. Noor Fitrah binti Abu Bakar and Ir. Ts. Mohamed Syazwan bin Osman for their endless guidance, patience, and support throughout my journey.

My thanks go to the EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE) for providing the workspace and experimental apparatus. My appreciation goes to Ir. Dr. Noorzalila binti Muhammad Niza and the laboratory assistants especially Khaironniswah binti Abdul Samad, Salamiah binti Abdul Hamid, Siti Maznah binti Hj Sulaiman, Saiful Anuar bin Roswan, and Faezah binti Md Desa for their assistance in the Research Laboratory and Analysis Laboratory. Special thanks to my master's degree cohort class of 2020 and husband for their encouragement.

Finally, this thesis is dedicated to my dear father and mother, who inspired me to pursue a master's degree with the goal of educating me. I hope this victory makes both of you proud and happy.

Sincerely,

KHAIRUNNISA BINTI KHAIRUDIN

JANUARY 2023

TABLE OF CONTENTS

CONF	FIRMATION BY PANEL OF EXAMINERS	ii		
AUTH	HOR'S DECLARATION	iii		
ABST	TRACT	iv		
ACKN	NOWLEDGEMENT	v		
TABL	LE OF CONTENTS	vi		
LIST	OF TABLES	ix		
LIST	OF FIGURES	X		
LIST	OF SYMBOLS	xiv		
LIST	OF ABBREVIATIONS	xvi		
LIST	OF NOMENCLATURE	xxii		
CHAF	PTER ONE INTRODUCTION	1		
1.1	Research Background	1		
1.2	Problem Statements	4		
1.3	Objectives	7		
1.4	Scopes and Limitations	7		
1.5	Significance of Study	9		
CHAF	PTER TWO LITERATURE REVIEW	10		
2.1	Introduction	10		
2.2	Bismuth-based photocatalyst	muth-based photocatalyst 10		
	2.2.1 Bismuth oxyhalides (BiOX) properties and it	s environmental		
	applications	10		
	2.2.2 Recyclability and stability of bismuth-magnetic micro	swimmers 14		
2.3	Fabrication methods, behaviour, and characterization	of light-driven		
	microswimmers	15		
	2.3.1 Fabrication methods of light-driven microswimmers	15		
	2.3.2 Propulsion mechanisms of light-driven microswimme	rs 25		
	2.3.3 Directional control and collective behaviour	of light-driven		

		microswimmers	31
	2.3.4	Physical characterization of light-driven microswimmers	32
	2.3.5	Factors affecting velocity of light-driven microswimmers	33
2.4	Photo	catalytic degradation of MPs	37
	2.4.1	Effect of irradiation time	37
	2.4.2	Reaction kinetics	39
	2.4.3	Photocatalytic degradation mechanism of PS MPs	41
СНА	PTER 1	THREE RESEARCH METHODOLOGY	45
3.1	Introd	uction	45
3.2	Resea	rch flowchart	45
3.3	Chem	cals list 47	
3.4	Metho	ods	48
	3.4.1	Synthesis of iron oxide magnetite nanoparticles (Fe ₃ O ₄)	48
	3.4.2	Synthesis of flake-like BiOI microswimmer	49
	3.4.3	Synthesis of flake-like BiOI-Fe ₃ O ₄ microswimmer	50
3.5	.5 Characterisations of Fe ₃ O ₄ nanoparticles, BiOI microswimmers, an		nd BiOI-
	Fe ₃ O ₄	microswimmers	51
	3.5.1	Crystallographic structure using XRD	51
	3.5.2	Particle size using PSA	52
	3.5.3	Zeta potential using PSA	52
	3.5.4	Morphological using FESEM and elemental composition usin	g EDX 52
	3.5.5	Absorption spectra using UV-Vis Spectroscopy	53
	3.5.6	Porosity and surface area using BET	54
3.6	Move	ment analysis and velocity determination of BiOI-Fe ₃ O ₄ micros	swimmers
			54
3.7	Photo	catalytic evaluation	56
3.8	Evalua	ation of photocatalytic and PSL MPs removal processes	57
	3.8.1	Total solution mass loss (%)	57
	3.8.2	GC-MS analysis	57
	3.8.3	TOC analysis	58
	3.8.4	UV-Vis analysis	58
	3.8.5	FTIR analysis	59
	3.8.6	Radical scavenging experiment	59
		vii	