UNIVERSITI TEKNOLOGI MARA

VISUALIZATION OF EXUDATES FUNDUS IMAGES USING RADAR CHART AND COLOUR AUTO CORRELOGRAM TECHNIQUE FOR EARLY DETECTION OF DIABETIC RETINOPATHY

HASLIZA BINTI ABU HASSAN

Thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy** (Electrical Engineering)

Faculty of Electrical Engineering

July 2018

ABSTRACT

According to World Health Organisation (WHO) statistics in 2011, about 175 million people at present are with diabetes mellitus and it will increase to 366 million by 2030. Currently, there are several tests that have been used to early detect diabetes disease and these tests are difficult and hard on patients and can result in nausea. The alternative way to make it easy on patients is by analyzing the fundus image of retina to early detect or controlling the diabetes disease. Hence in this research, visualization of exudates in fundus images using Color Auto Correlogram (CAC) technique and radar chart for early detection of Diabetic Retinopathy (DR) is proposed. The method consists of capturing several key features of the CAC extracted from fundus images and plotting these features in the form of radar chart. The method is centred on the detection and removal of exudates from the original fundus image, then comparing the CAC features of the original image with the exudate removed from the image. If exudates are present, the CAC exhibits significantly different features which can be easily distinguished using the radar chart. A total of 149 fundus images from the publicly available MESSIDOR databases were used as database in this study. The image normalization was performed to standardize the colors in the fundus images. Then, the optic disc (OD) from the fundus image was removed. Here, the RGB pixels of exudates, non exudates and background pixels were extracted as features and the intensity colours of each pixel are further classified. All 149 fundus images were fed as inputs to the Multilayer Perceptron (MLP) and Support Vector Machine (SVM) for detection if exudates were present in them. Then, each of these images was visualized using CAC technique and radar chart. From exudates fundus images, the percentage results of non-overlapping CAC features of radar charts for MLP and SVM were 88.24% and 85.29% respectively. As for normal fundus image, the percentage results of overlapped CAC features of radar charts were 81.5% for MLP and 82.7% for SVM. Furthermore, to evaluate the effectiveness of the proposed method, the experimental results have been verified by opthalmologist too. The ophthalmologist verification showed that the percentage results of non-overlapping and overlapping CAC features of radar charts were 88.24% and 81.5%. It is followed with the validation of visualization outcomes using Artificial Intelligent (AI) techniques. Results attained showed that the accuracy of MLP classifier was 86.36%. As for SVM classifier, the accuracy obtained was 83.8%. The visualization technique proposed is indeed suitable to be used as an initial stage in early screening of this disease.

ACKNOWLEDGEMENT

All praises be to Allah, Lord of the Universe, the Merciful and Beneficent. Salam to Nabi Muhammad S.A.W., his friends, companion and the people who follow his path.

Thanks to Allah SWT for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully.

My gratitude and thanks to my supervisor Professor Dr Nooritawati Md Tahir and cosupervisor, Dr Ahmad Ihsan bin Yassin. Thank you for believing in me, your support, patience, and ideas in assisting me with this project. I also would like to express my gratitude to the Opthalmologist, Dr Suraiya binti Shafiei for her knowledge and assistance.

Next my sincere thanks to my husband, Azlee bin Zabidi. He has been my inspiration and motivation for continuing to improve my knowledge and move my career forward. This study is the result of your support, encouragement, help and love. I also thank my wonderful children, Eleesa and Aleef for always making me smile and understanding of my work.

Thanks must go to my family for their prayers and encouragement, especially to my parents, Mr Abu Hassan bin Majid and Mrs Siti Asnah binti Mat Taib who got me to and through university.

Finally, my appreciation goes to the staff at Gait Analysis Laboratory Level 7 Universiti Teknologi MARA (UiTM) Shah Alam and research members who provided the facilities and assistance during study. Special thanks to my colleagues and staff at Universiti Selangor (UNISEL) whose support meant beyond what they realized.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii

CHAPTER ONE INTRODUCTION

1.1	Background	1
1.2	Problem Statements	3
1.3	Objectives	4
1.4	Research Scope	4
1.5	Research Significance / Contribution	5
1.6	Thesis Layout	5

CHAPTER TWO :LITERATURE REVIEW

2.1	Introduction							7
2.2	2 Diabetic Retinopathy (DR)							7
	2.2.1	Detection	of	Exudates	in	Fundus	Image	9
	2.2.2 The MESSIDOR Database							12
2.3	Visualization							15
2.4	Content Based Image Retrieval (CBIR)							17
	2.4.1	Colour Auto	correlo	gram (CAC)				19
2.5	Intelligent Techniques							22
	2.5.1	Artificial Ne	ural Ne	etwork (ANN)				22

	2.5.2	2 Support Vector Machine (SVM)					
2.6	Reinha	einhard's Stain Normalization Technique					
2.7	Summary					36	
СНАР	TER T	HREE :METHODOLOGY					
3.1	Introdu	iction				38	
3.2	Image Database						
3.3	Preprocessing					45	
	3.3.1	Color Normalization				45	
	3.3.2	Removal of Optic Disc				48	
3.4	Discrimination of Exudates, Non Exudates and Background Pixels						
	using	MLP1 and	SVM	[1	49	
	3.4.1	Exudates, Non Exudates and I	Background Se	gmentation		52	
	3.4.2	MLP1 Implementation				53	
	3.4.3	SVM1 Implementation				54	
3.5	3.5 Visualization using CAC and radar chart						
	3.5.1	Results Verification by Optha	lmologist			56	
3.6	Verific	ation of Visualization Results				61	
	3.6.1	Classification using MLP2				61	
	3.6.2	Classification using SVM2				62	

CHAPTER FOUR : RESULTS AND DISCUSSIONS

4.1	Introduction							64
4.2	Image Normalization and Removal of Optic Disc							64
4.3	Discri	mination of	Exudates	and	Non	Exudates	Pixels	65
	4.3.1 Selection of Training Algorithm between Scale Conjugate (SCC							
		and Levenber	g Marquardt (LM) for	r MLP1			66
 4.3.2 MLP1 Implementation 4.3.3 SVM1 Implementation 4.4 Visualization 							72	
							75	
							81	
	4.4.1	CAC Implem	entation					81
	4.4.2	Radar Chart I	mplementation	1				85
	4.4.3	Graphical Use	er Interface Im	plemen	tation			86
4.5	Verifi	Verification of Visualization Results by Opthalmologist						89