UNIVERSITI TEKNOLOGI MARA

EFFICIENCY OF FATTY AMIDES AND OXYGEN SCAVENGERS AS CORROSION INHIBITORS OF CARBON STEEL

IZNI MARIAH BINTI IBRAHIM

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Chemical Engineering)

Faculty of Chemical Engineering

November 2018

ABSTRACT

In this study, organic corrosion inhibitor has been synthesized by using palm fatty acid distillate (PFAD), a by-product from processing of crude palm oil. The synthesized corrosion inhibitor contained mixture of fatty amides. However, this amide-based corrosion inhibitor was only effective in static condition and at room temperature $(25^{\circ}C)$. In real industrial applications, most of conditions are facing with moving fluid or elevated temperature conditions. One would expect that the corrosion activity is more vigorous in these kinds of conditions. This study introduced selected oxygen scavengers into the inhibited solution consisting of fatty amides. The main objective is to enhance the inhibition performance in static, different rotation speeds and in elevated temperatures. At the initial stage of work, different concentrations of fatty amides (10-200 ppm) were tested to obtain the inhibition efficiency. Then, one concentration of fatty amide would be combined with different concentrations of different selected oxygen scavengers, (500-2000 ppm) (sodium sulphite, hydrazine and diethyl hydroxylamine). The corrosion inhibition performances were determined through electrochemical tests; linear polarization resistance and electrochemical impedance spectroscopy. From the electrochemical tests, it showed that increasing the concentration of oxygen scavengers in the inhibited solution, the inhibition efficiency increased. However, it was an exception for combination of fatty amides with diethyl hydroxylamine. The mixture of fatty amides with sodium sulphite and mixture of fatty amides with hydrazine achieved high increment in the inhibition efficiency (IE) in static condition (25°C). Both mixtures were further tested in different temperatures (30, 40 and 50°C) and different rotation speeds (laminar, transition and turbulent). The mixtures showed that increasing concentrations of sodium sulphite/hydrazine, the IE increased. However, the IE decreased with increasing temperatures and with increasing rotation speeds for both mixtures. After that, the nature of the film formed on the specimen surface was analyzed by surface analysis including Scanning Electron Microscope-equipped with an Energy Disperse X-ray spectrometer Atomic Force Microscope (AFM) and X-ray Photoelectron (SEM-EDX), Spectroscopy (XPS). The finding showed that the inhibitors adsorbed on the specimen surface through physical adsorption according to the Langmuir isotherm. It can be concluded that the mixture of fatty amides with sodium sulphite is the best mixture to protect the metal surface of carbon steel through physical adsorption.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamduillah, all praises to Allah S.W.T for His guidance and blessing for giving me strength and ability to complete this study. First and foremost, my special appreciation goes to my superior supervisors Associate Professor Dr. Junaidah Jai, Associate Professor Md Amin Hashim and Dr. Muhammad Daud for their constant support and supervision. I'm gratefully praised for their invaluable help, encouragements, patience, numerous comments and suggestion during the process in completing this study.

I would like to express my appreciation to the Dean and the Deputy Deans, Faculty of Chemical Engineering for their support and help towards my postgraduate affairs. My acknowledgement is also goes to all the academic and non-academic staffs of Faculty of Chemical Engineering and Malaysian Nuclear Agency, Bangi for their cooperation during my journey in this study.

My special appreciation goes to my beloved parents, Mr. Ibrahim bin Mamat and Mrs. Zaidah binti Zakaria and also to family members for their tremendous support, prayers and encouragements. Their loves have always given me the strength to survive in facing any obstacles.

I would also like to extend my sincere thanks to all my friends especially Sxureha, Rafizah, Ezan Suhaila, Faridatul Akmal, Arman, Nazri, Hikmah, Noorfazlida, Nurul Fatin Alia, Zatul Iranati, Nurul Shuhada and all members of Postgraduate Room, Level 5 for their moral support and helps during my study. Thank you very much for the great memories.

To those who indirectly contributed in this research, your attention means a lot to me.

Thank you very much.

IZNI MARIAH BINTI IBRAHIM, 2018

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	X
LIST OF FIGURES	xiii
LIST OF PLATES	xix
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxi

CHA	PTER (ONE: INTRODUCTION	1	
1.1	Resear	rch Background	1	
1.2	Proble	em Statement	3	
1.3	Object	tives	4	
1.4	Scope and Limitation			
1.5	Significant/ Novelty of Research			
СНА	PTER 7	TWO: LITERATURE REVIEW	7	
2.1	Introd	uction	7	
2.2	Aqueo	bus Corrosion Study 7		
	2.2.1	Forms of Aqueous Corrosion	7	
	2.2.2	Mechanism on General Corrosion of Carbon Steel	9	
2.3	Factor	rs Affecting Aqueous Corrosion	11	
	2.3.1	Effects of Oxygen Content	12	
	2.3.2	Effects of Different Temperatures	13	
	2.3.3	Effects of Flow Velocities	15	
		2.3.3.1 Different Flow Regimes	15	
		vi		

		2.3.3.2 Rotating Cylinder Electrode	16
	2.3.4	Mass Transport and Shear Stress	18
2.4	Corro	sion Inhibitor for Aqueous Corrosion	20
	2.4.1	Fatty Amides Corrosion Inhibitor	22
	2.4.2	Critical Micelles Concentration	23
2.5	Corro	sion Inhibition Efficiency Enhancement	24
	2.5.1	Addition of Secondary Substance: Halide and Metal Ions	24
	2.5.2	Addition of Oxygen Scavengers	26
	2.5.3	Synergism Parameter	30
2.6	Electr	ochemical Corrosion Testing	31
	2.6.1	Principle of Linear Polarization Resistance Test	31
	2.6.2	Electrochemical Impedance Spectroscopy	33
2.7	Surfac	ee Corrosion Analysis	38
	2.7.1	Scanning Electron Microscope equipped with an Energy Disper	rse X-
		ray	38
	2.7.2	Atomic Force Microscope (AFM)	39
	2.7.3	X-ray Photoelectron Spectroscopy	40
	2.7.4	Adsorption Mechanism of Corrosion Inhibitors	40
СНА	PTER 7	THREE: RESEARCH METHODOLOGY	44
3.1	Introd	uction	44
3.2	Materials		
3.3	Prelin	ninary Works	46
	3.3.1	Synthesis of Fatty Amide Inhibitor	47
	3.3.2	Removal of Dissolved Oxygen by Selected Oxygen Scavengers	47
3.4	Form	lations of Corrosion Inhibitors	48
3.5	Corrosion Testing		
	3.5.1	Electrochemical Corrosion Tests	50
	3.5.2	Experimental Conditions for Corrosion Tests	51
		3.5.2.1 Static Condition	51
		3.5.2.2 Different Rotation Velocities	54
	3.5.3	Specimen Used for Different Conditions	56
3.6	Surface Corrosion Analysis by SEM-EDX, AFM and XPS		