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Application of Stochastic Model in Field Of Engineering:
Monte Carlo Method in Modeling Fatigue Crack Propagation

FR. M Romlay

ABSTRACT

This paper deals with the modeling offatigue crack propagation on a gear tooth using a dual boundary element
method. The effects of life cycle to the multiple site fatigue crack propagation were studied. Analysis ofstress inten­
sity factor was performed by the deterministic approach using a dual boundary element method. The dual boundary
element method was used to simplifY the crack model through the numerical approach. The complex problems have
been solved using the information from a boundary condition only. Next, the initial crack and life cycle of the struc­
ture have been predicted using stochastic method which is Monte Carlo. The crack size and fatigue life were com­
puted until failure of the structure. The failure analysis was performed by a linear elastic fracture mechanics. The
scenarios of the fatigue crack propagation were given by all integration of both dual boundary element and Monte
Carlo method. Therefore. fatigue life ofmultiple site crack structure can be predicted.
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Introduction

Monte Carlo method is a stochastic characteristic which is nondeterministic behaviour of various physical and
mathematical applications. In the area of fatigue reliability, an estimation of failure is required. This is caused by
uncertainties in initial crack, surface roughness, material propeJ1y, applied load, f1aw, defects such as scratches or
weld defects from manufacturing process (Yang et. al 1988). In other words, as the crack grows, the crack size has a
variation according to those uncertainties and the residual life of the structure is not deterministic but stochastic. Fa­
tigue crack propagation is inherently a random process because of the inhomogeneous of material, connected with its
crystal structure and with variations of convective film coefficient at the structures surface due to it non-smoothness
and other similar reasons (Cherniavsky 1996). The experimental results for the fatigue crack growth under constant
amplitude loading show that the material resistance against crack propagation has the inter-specimen as well as the
intra-specimen variability. A stochastic model considering both types of variability is thus needed for the rational
assessment of fatigue crack propagation. Therefore, the analysis of fatigue crack propagation should be based on the
probabilistic approach and the inspection interval or the repair method must be determined according to the possibil­
ity of structural failure considering the uncertainties mentioned above.

This paper presents the development of an inspection programme for the fatigue crack propagation which is an
enhancement of an earlier programme (Kebir et. al. 200 I), and the major differences between these two programmes
are summarized below:

The crack propagation has been modelled using BEM principal of Beasy software with the combination of random
function of Matlab program.

The life cycle of a centre member bar with more than one notch has been analyzed using dual boundary element and
Monte Carlo.

Law of Fatigue Crack Propagation

In 1963, Paris and Erdogan created a Paris law equation for calculating fatigue crack propagation rate, daldN as
given in Equation (1).

da
-= C(~Kt
dN

(I)

M = KmflX - Kmi.. is the range of stress concentration factor and C and m are the material properties.

The stress concentration factor is one of the parameters that are considered in linear elastic fracture mechanic.
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The theory is only acceptable fJr the situation when there is no yield occurs at the crack tip. Therefore, Equation (I)
can.~.~Hsed for high cyclic fatigue cases. Forman et al. (1967) tried to modify the Equation (I) as it does not include
the stress concentTation ratio, R = K . /K and the fracture strength, Kc.

111111 max

Fr'om the definition of 11K = Kmax (1- R) and Kill" = Kc• the boundary condition for the crack propagation rate
is:

I
. . da
1m It -- = 00

~K~(l-II)K, dN

Substituting Equation (2) in Equation (I) gives:

ria C(t-K)'"
dlv- = (1 - R)K

c
- 6.K'·

(3)

(2)

From Equation (3), Forman (1967) found that the In value for aluminium alloy 7075-1'6 and 2024-1'3 was 3.
Equation (3) is known as Forman equation. Starting from the Forman equation and considering the crack will not
propagate if the 6K value below t1K'h (figure. I), a growth law was introduced as ill Equation (4) to calculate the
fatigue crack propagation rate.

(4)

This model is valid for a soft metal that under both the fix and random loading amplitude, which C' is ap­
proaching to 24x 1O'7mm!cycli,;.

Failure

Stage I
Region

K,t,

Stage II
Region

~

Stage III
Region

Fig. I: Scheme diagram of short and long fatigue crack propagation (Dharani 200 I).

Crack behaviour is determined by the values of the stress intensity factor, which are the function of an applied
load and the geometry of the crack structure. The crack growth process is performed by the analysis of the crack
extension. The stress intensity factor is evaluated and the crack path is defined in terms of the stress intensity factor.
Damage tolerance analysis is developed based on linear elastic fracture mechanics. The stress intensity factor is de­
scribed the behaviour of cracko.

Crack Modeling Strategy

The domain region has been tn:ated as dual boundary element by Boundary Element System (B EASY) software. It is
necessary to calculate the related stiffness matrix and effective stress intensity factor, KefI' by means of Dual Bound­
ary Elements Method (DBEM). The crack modelling strategy shown by algorithm below:

Carry out a dual boundary element method for stress analysis of the structure.
Compute the effective stress intensity factors, Ken' with the .I-integral technique.
Compute the direction of ~he crack-extension increment.

744



F.R. M. ROMLAY

Extent the crack one increment along the direction computed in the previous step.
Repeat all the above steps sequentially until a specified number of crack-extension increments have been

achieved.

The boundary stiffness matrix and Kerf, after condensation, have been inserted into crack initial and propagation
routine. using Monte Carlo method by MATLAB source code. Using the S-N curve at 50% includes the deterministic
approach. - •..~......"'~~. ···.·.w.. _ ,.,.

By running a Monte Carlo method by MATLAB program, it possible to calculate the cycle number for each of
the propagation and the crack length. The initial point also indicated by random process as shown in Figure 2. The
modified data files in BEASY has been run to update the crack parameter.

I Monte Carlo method I
Sampling Num- Sampling Crack Dedicate Initial

ber of Cycle Length Point

Fig. 2: Random parameter for fatigue crack propagation

Numerical Results Of Plate 14 Holes

In order to validate the global probabilistic approach, the results have been compared with the fatigue test on a plane
plate with 14 free holes that was conducted by Kebir et. al. (2001) at Aerospatiale-Matra laboratory in Suresnes,
France as shown in Figure 3.

T'" ............ N,th24

2S f I ..,2S,-.. I(O, () II ,<) 0 ,} <, .. , .- Q
I)CHI 1 • Co. III" "16 I~ )J D 14.

I No"'h No

I

I
I Hold hole

_ Constraint
)7S - .

Fig. 3: Schematic diagram of plate 14 holes.

The sample material was aluminum alloy 2024-T3 sheets with a thickness of 1.6 mm. The load has been ap­
plied on transversal direction. The Young Modulus of the sample was 72.7 GPa. The initial structure has been dis­
creet with 262 elements, in one zone with 1202 degrees of freedom. It has 897 internal points patch in the model.
The numerical results have a good compromise between the test results. The total numbers of cycles with the prob­
abilistic approach are closely similar to the test expressed in Figure 4.
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The synthesis of the probabilistic results is ex.pressed in Figure 5. [n the deterministic approach, the propagation
phasc was short with is 30x 103 cycle. [t was because all the cracks assumed begin at the same time, since all the sites
were undergoing the same stress level. So, the probabilistic approach has an advantage of giving the view of initial
crack propagation.· A large crack size has been dominated the failure probability at the beginning of the failure proc­
ess. In a long duration time, the small cracks size may have the most dominant effect on the failure probability.
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Fig. 5: Life cycle of fatigue crack propagation by iterations

Table I shows a maximum crack length before failure is 3.5293 mm. At this moment, the life cycle only
0.7354x 10

5
cycles as presents at 7th iteration. This happened because a crack notch 14 had enough energy to propa­

gate initial crack. The crack propagated very fast and verifies the high propagation ratc. However, the failure of the
sample did not happen until the life cycle reached 1.9825x I05 cycles.
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Table I: Results of fatigue crack propagation

Iteration

I

2

3

4

5

6

7
8

9

10

11

12
13

Crack Length

0.0056

0.1702

0.1034

0.3706

0.2498

0.2077

3.5293

0.2219

02557

0.6363

0.1043

0.1557
Failure

0.2957

0.3058

0.3985

0.4319

0.5012

0.6541

0.7354

1.2595

1.3871

1.4735

1.5108

1.7244
1.9825

Point No.

7

2

1

I
1

11

14
14

12

13

16

21
21

Any notch that has been chosen randomly to propagate initial crack was increasing its stress intensity factor.
The stress intensity factor values have been constantly increased in a few iterations, which the value slowly trended
to achieve one fix value that was being the maximum stress intensity factor value at that moment. For the fourteen
holes plate, notches I, 2, 1I, 12 and 14 have been chosen for having an initial crack as shown in Figure 6. The in­
creasing was continuing for certain iterations. After that, the crack has been randomly propagated at other notch,
which had lower stress intensity factor. In this scenario, the notch 6, 15, 16, 17, 18 have been randomly propagated
the crack. The crack has been continuing propagate for a certain iterations to get close with the maximum stress in­
tensity factor at that time. The increased of the life cycle was continuing the crack propagation at any ready crack
randomly. At this moment, the crack propagation can make the sample fail. Notch 21 was having a catastrophic fail­
ure when its effective stress intensity factor reached the value of 276,659.75 MPam l12 The high potential energy
assembled at a low stress intensity factor notch and catastrophic failure occurred because of the high grow crack
propagation rate.
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Fig. 6: Graph of effective stress intensity factor versus notches number for Ist, 7th and 13th iteration.

Figures 7 and 8 show a mean life and a standard deviation prediction for the tenth iterations. It is seen that the
number of samples influences the fatigue life. The results are constant when the number of samples is over 300. So,
the Monte Carlo-BEM result here gives a statistical value. The mean life and a standard deviation prediction for
other iterations have given the same result like the tenth iteration.
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Numerical Results of Gear Tooth

The same method was continucd for modeling of fatigue crack propagatior. on a gear tooth as shown in Figure. 9.
Two notches were chosen as example on the left and right side and name as notch I and notch 2. The results of ap­
plying Monte Carlo method for gear tooth are shown in Table 2. Figure 10 illustrates the major crack at notch I. This
is due to the stress applied al the left side by considering the real load when gear tooth is operating. However, the
random processes still happen because of the small different value of stress intensity factor. So, a very small crack
happened at notch 2 in the third itcration.

L",d Load

--'
('otISlranll

7

Fig. 9: Gear looth with its boundary condition Fig. 10: Notch was propagate to be a crack
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Table 2: Life cycle and crack size of gear tooth by Monte Carlo analysis.

Crack size Notch Nlnitiation NPropagation NTolal
Iteration no. (10.3) (mm) no. (lOS) ( I03

) ( IOS)
1 0.3862 I 0.2840 35.7596 0.6416
2 7.9654 I 0.7782 8.6242 0.8645
3 0.4273 2 09752 0.3350 0.9786
4 47054 1 0.9967 4.2570 1.0393
5 (Failure) I 1.0594 6.8270 1.1277
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The modeling of fatigue crack propagation was repeated to a gear tooth but by fully deterministic approach and
without using Monte Carlo method. The result in Table 3 shows that the crack directly propagated without any crack
inter-phase happened and failed at 6.5984:J 104 cycles. The geometry of the crack is viewed In Figure. II. The crack
propagated at the notch with maximum principle stress, IJml/x' That was why the crack propagated very fast and the
calculation of the crack length, da finished directly by a single iteration. The modeling work by fully deterministic
method could not provide the characteristic of a random process.

Fig. 11: Failure of the gear tooth

Table 2: Life cycle and crack size of gear tooth by Monte Carlo analysis.

Iteration
No.

Conclusion

Crack Length
(l0-3)(nun)

Failure

Notch No.

4.5411 2.0573 6.5984

An overall assessment method proposed in this paper was developed in order to validate the fatigue crack propaga­
tion with the probabilistic method through the Monte-Carlo. The modeling process used the dual boundary element
method. Using this method makes the work simpler than finite element method, which is common method that using
today. The results from the boundary element method and Monte Carlo analysis show that the life cycle of structure
can be predicted and obtained in good agreement with the experiment results. The results obtained performed that
such an application seem to be possible, taking into account the fact that the computer simulation can be used to
predict fatigue crack propagation. The proposed algorithm can be used for a guideline to have a risk and reliability
analysis and Ii fe expectancy of the structure.
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