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ABSTRACT

A new formulation on general shell theory has been proposed ta accommodate the shear deformation effect and
inertia effects -'.lre inc/uded. The analysis capability of the formulation is the vibration analysis of a thick and
laminated plate-shell assemblages using composite. The proposed general shell formulation can be used for thick
shell and can be converted to thin shell by neglecting the thickness-to-radius ratio.
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Introd uction

Thick prismatic composite plates and shells have been occupied extensive applications as structural elements. Due to
its high strength-to-weight and stiffness-to-weight ratios, they are selected as the suitable material for engineering
applications in aircraft and submarine structures, automobile components, building construction, sport equipments
and so on. Therefore, an accurate analysis of thick prismatic shells, i.e. vibration analysis is a need to engineers for
predicting the c,mect behavior of the thick prismatic shells.

Materials and Methods

Formulation of Finite Strip Equations

Displacement Field Functions
Finite strip method has been chosen as the numerical analysis tools for approximating the solution of the vibration of
thick laminated shell. The selection of this method is due to the high number reduction of degree of freedom. This is
important when the prismatic shell has a constant cross-section over the length. The prismatic shell is then divided
into an equal length of strips that running parallels along the whole length, I, which in the x-axis direction. The two
end longitudinal length can be rigidly connected to the other prismatic plate or shell structure or left to be 'free' if it
is not connected.

. . u, v, w,qJx , qJy
The dIsplacement function for the can be expressed as the multiplication of analytical,

continuously-differentiable series function in the longitudinal x-direction and continuous polynomial functions in the
crosswise direction. The cubic order polynomial function is used for interpolating those fundamentals displacement
quantities. Timoshenko beam function is used as the longitudinal displacement function.
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By applying the selected function to the corresponding direction,

u =I Ym(x)(a o + a,Y + azy 2 + a3y3 ) (1)
m=1

v= IYm(x)(bo +b,y+bzy 2 +b3y J) .. ·· · · · ·· ·.. ··· ·(2)
m=1

w = I Y", (X)(Co + CIY + czy 2 + c3y) ) (3)
m=1

CPy = Iy,,,(x)(eo +e,y+e2y 2 + e3y 3) (4)
11/;1

cP, = IYII/(x)(Jo + J;y+ f 2y 2 + j~yJ) (5)
",==1

Here

r = moth term of the longitudinal beam function
Ym(x) = the Timoshenko Beam Function

,n the matrix form, equation (1-5) can be expressed as

U Y,,, 0 0 0 0 [B(y)] 0 0 0 0

v 0 Y:n 0 0 0 0 [B(y)] 0 0 0
r

W =2: 0 0 Y,,, 0 0 0 0 [B(y)] 0 0 {a}", ...(6)
",;::1

0 0 0 Y,1l 0 0 0 0 [B(y)] 0CPr

CP., 0 0 0 0 ~'I 0 0 0 0 [B(y)]

Or in more compacted form,

{u}= iJslrpl{aL, (7)
",=1

Note that in the equation (6) the symbol r1 denotes the matrix has its function diagnolised. The submatrices

[,B(y)] . d fi d [J y / yJ J db' isl h d' I' d Ym f .
IS e me as an su matnce as lagno Ise unctIOn.

The matrix {at is the undetermined coefficient matrix and it has a relationship with the nodal degree of freedom
matrix ld}m as follows,

{a}", = [C]{d}", (8)
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And the column matrix
{a},.,

and is defined as

{a}", = {ao al a2 a J bo b l b2 bJ Co C J (;2 CJ eo e e2 eJ fo J; f2 fJ}I

{dt = {u 1 VI WI rpyl rp." u2 ...... , ....................................... rpx4 }

After the substiwtion, equation 7 becomes

{u}= Iislrpl[c]{d}", (9)
m=1

Stiffness Matrix Development

Using equation (9) leads to the following relationship,

{E} =t [sl [P].[C]{d}m······················ ······.·· (10)
m=1

where subscript e indicates the differen'tiated terms.

E:
General expression for th'e strain energy, U, for thick laminated shell by neglecting Z? terms and since there is no

a
applied stress in the z --<lirection, the term 'becomes zero.

u =~ fa E +a[; + • r + • r + • r dV (1I)2 xx yy xyxy zxz., .'yxy
V

Or in the compacted form

u =±f[ET'[Q][E]dV (12)

where matrix [QJ is the material properties matrix.

The strain energy given by equation (12) can be expressed in terms of nodal displacements as follows:

u =±I:'=JIr!A{d}:,[cT'([p]~[s]:n[Q][srn[Q][sL[PJ.)[C]{dJdzdydx (l3)
,,=1 2

By applying the Principle of Minimum Potential Energy, we thus obtain the stiffness matrix as
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[Kt
[KLn
[KL

with the term [K]

[K]= [cY[JL,[cl (14)

and

II

[.f]",,, = l' i r~[pJ:[Srm[Q][sL[pL dzdxdy (15)
2

Mass (Inertia) Matrix Development

The potential energy expression for the thick rigid body is given as

/ 1 2r f (2 2 2) ( ) (2 2)J. PV ="2 CO 111Iuo+vo+Wo +212 uoqJx+ VoqJy +1) qJx +qJy

+ ~[12(U; +v; +w;)+21)(uoqJx +VOqJy)+J4 (qJ; +qJ.~) ]dxdy. (16)

II,!' ,13,14
Where by the parameter of - is defined as

= LoP(k)(1,z,z2,z))dz (17)

(k)

In the equation (17), the parameter P denotes the homogenous mass per unit volume of thick rigid body for each
of k-th layer of laminae. Substitution of equation (17) into equation (16) leads to the following final potential energy
eqJation;

vpv =~ CO 2 i f (u ~ + V~ + Wn(p + ~ ) + (qJ; + qJ: ) (1) + ~ )

+ [(uoqJr +voqJ.I,)(2/2 +2/J )]dxdy (18)

By substituting the nodal degree freedoms in equation xxx and multiplying with
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r r T ~ )!I I{d} [CY\[PYll] [p] [C] {d}"dydx (l9)
m;::;} n=\ In

[n equation (19;, the matrix
[1-]

is defined as follows;

1 21
I +--1... 0 0 0 21 +_3

I R 2 R
1 21

0 1+--1... 0 21 +_3 0
I R 2 R

0 0 1 12 0 0+-
I R

21 1
0 21 +_3 0 I+~ 0

2 R 3 R
21.

0 0 0 1 1421 +--' +-
2 R 3 R

Applying the Principle of Minimum Potential Energy, the mass matrix is shown as

with

[M Jmn = [CY[91 Jrnn [cJ

Formulation for Free Vibration of Thick and Laminated Shell Analysis

By dropping all of suffixes in the stifness and mass matrix will lead to a familiar free vibration formulation, as
follows;

The order of matrix K and Mare (r x r), which then represents to a set of r linear of homogenous equations. The

IK -w 2Mj
determinant of this matrix must be equated to zero and the eigenvalues of the problem dm be obtained
numerically using Sturm sequence method.
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Results and Discussion

A genuine formulation based on Finite Strip Method has been developed for a free vibration analysis of thick and
laminated plate-shell structures. Shear deformation and rotary inertia has been included in the formulation. The
(omputer program of the new formulation for the verification purposes is under effort of compiling and debugging
process of the author.

The expected outcome of this new formulation will be the eigenvalues of a self vibrating thick plate and shell
structures that are under the author's interest. The results will be compared with the other reseachers findings and the
accuracy of the formulation can be evaluated.
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