SIIC001 STATISTICAL OPTIMIZATION AND ARTIFICIAL NUERAL NETWORK MODELLING OF ANNONA MURICATA (SOURSOUP) LEAVES IN SUPERCRITICAL CARBON DIOXIDE EXTRACTION

Muslihah Yusof¹, Mohamed Syazwan Osman^{1,} Ir Mohd Azahar Mohd Ariff¹ and Syahrul Fithry Senin²

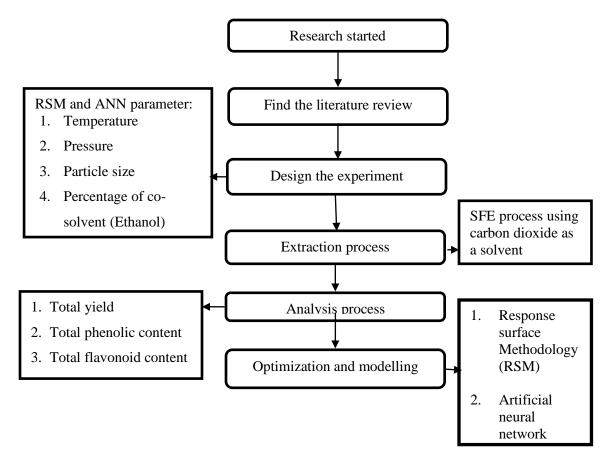
³Faculty of Chemical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia

²Faculty of Civil Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang Malaysia

*Corresponding author: syazwan.osman@ uitm.edu.my

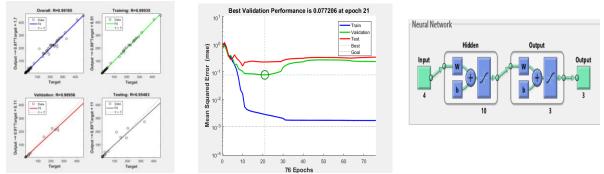
Abstract:

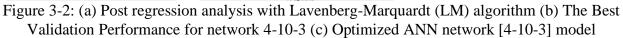
Supercritical fluid extraction (SFE) using carbon dioxide as a solvent is one of the non-conventional method recently used in extraction. Carbon dioxide is used as a solvent in this extraction because it is a non-toxic solvent. From the previous study, Annona Muricata Leaves have effectiveness as an antiinflammatory, anticancer and also antioxidant. Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were used in this research to investigate and compare the performance of RSM and ANN in optimization total yield, antioxidant activity and total phenolic content from extract of Annona Muricata Leaves using SFE technique. All the responses (optimization total yield, antioxidant activity and total phenolic content) were modeled and optimized as functions of four independent parameters with were temperature, pressure, size of particle and percentage of co-solvent using RSM and ANN. the coefficient of determination (R^2) and root mean square error (RMSE) were employed to compare the performance of both modelling tools. From the results, ANN show higher predictive potential compare to RSM with higher correlation coefficient 0.9594, 0.9876, 0.917 for total yield, antioxidant activity and total phenolic content respectively. ANN also shows the lower RMSE compare to RSM with 0.461 for total yield, 0.998 for antioxidant activity and 23.697 for total phenolic content. Thus, as conclusion ANN model could be a better alternative in data fitting for SFE for extraction of total vield, antioxidant activity and total phenolic content from Annona Muricata Leaves.


Keywords:

Supercritical fluid extraction (SFE), Annona Muricata Leaves, Optimization, Response Surface Methodology (RSM), Artificial Neural Network (ANN) metals

Objectives:


- To optimize the optimal process condition for the extraction of *Annona Muricata* Leaves via supercritical fluid extraction (SFE) using response surface methodology (RSM).
- To model, artificial neural network (ANN) for Annona Muricata Leaves and compare with RSM.


Methodology:

Results:

ANN model

RSM model

Response 1: Total yield Table 4-0-5: ANOVA for regression model total yield					Response 2: Antioxidant activity Table 4-6: ANOVA for regression model Antioxidant Activity					Response 3: Total phenolic content Table 4-7: ANOVA for regression model total phenolic content									
Source	Sum of	df	Mean		p-value	Source	Sum of Squares		Mean	F-	p-value	í	Source	Sum of	df	Mean	F-	p-value	
	Squares	~~	Square		1	Source	Sum of Squares	<u>ar</u>	Square	r- value	p-value			Squares	~	Square	value	F	
Model	141.94 14	10.14	11.78	< 0.0001	significant	Model	2161.39	1.1	154.38	22.08	< 0.0001	significant	Model	1.921E+05	14	13718.95	27.44	< 0.0001	significant
A-Pressure	0.4338 1	0.4338	0.5040	0.4886		A-Pressure	125.24		125.24	17.91	0.0007	arginiticant	A-Pressure	4610.07	1	4610.07	9.22	0.0083	
B-Temperature	6.69 1	6.69	7.77	0.0138					309.03	44.20			B-Temperature	26125.87	1	26125.87	52.26	< 0.0001	
C-Particle size	41.17 1	41.17	47.84	< 0.0001		B-Temperat							C-Particle size	40172.44	1	40172.44	80.35	< 0.0001	
D-%co-solvent	66.78 1	66.78	77.59	< 0.0001		C-Particle si		-	853.99	122.13			D-%co-solvent	68396.93	1	68396.93	136.80	< 0.0001	
AB	0.0033 1	0.0033	0.0039	0.9511		D-%co-solv			81.81	11.70	0.0038		AB	12256.37	1	12256.37	24.51	0.0002	
AC	1.02 1	1.02	1.18	0.2938		AB	21.52		21.52	3.08	0.0998		AC	4737.38	1	4737.38	9.48	0.0077	
AD	4.61 1	4.61	5.36	0.0352		AC	67.29	1	67.29	9.62	0.0073		AD	9633.75	1	9633.75	19.27	0.0005	
BC		0.9181	1.07	0.3180		AD	307.97	1	307.97	44.04	< 0.0001		BC	9542.77	1	9542.77	19.09	0.0006	
BD	1.01 1	1.01	1.18	0.2947		BC	4.93	1	4.93	0.7057	0.4141		BD	101.48	1	101.48	0.2030	0.6588	
CD	7.90 1	7.90	9.17	0.2947		BD	0.7420	1	0.7420	0.1061	0.7491			2844.63		2844.63		0.0307	
	3.04 1	3.04	3.53	0.0085		CD	115.40	1	115.40	16.50	0.0010		CD		1		5.69		
A ²						A ²	163.93	1	163.93	23.44	0.0002		A ²	4249.57	1	4249.57	8.50	0.0107	
B ²	4.90 1	4.90	5.70	0.0306		B ²	94.89	1	94.89	13.57	0.0022		B^2	1004.70	1	1004.70	2.01	0.1768	
C1	34.25 1	34.25	39.80	< 0.0001		C ²	482.22		482.22	68.96	< 0.0001		C ²	12088.97	1	12088.97	24.18	0.0002	
D^2	6.92 1	6.92	8.04	0.0125									D^2	9849.79	1	9849.79	19.70	0.0005	
Residual	12.91 15	0.8606				D²	190.38		190.38	27.23	0.0001		Residual	7499.49	15	499.97			
Lack of Fit	10.07 10	1.01	1.77	0.2738	not	Residual	104.88	15	6.99				Lack of Fit	5844.30	10	584.43	1.77	0.2755	not
					significant	Lack of Fit	98.60	10	9.86	7.85	0.0173	significant							significant
Pure Error	2.84 5	0.5679				Pure Error	6.28	5	1.26				Pure Error	1655.19	5	331.04			-
Cor Total	154.85 29					Cor Total	2266.27	29					Cor Total	1.996E+05	29				

Figure 3-1: ANOVA for regression model (a) total yield (b)antioxidant activity (c)total phenolic compound

Table 3-2: Comparison between RSM and ANN model in terms of R² and RMSE

Parameter	RSM			ANN				
	Total	Antioxidant	Total	Total	Antioxi	Total		
	Yield	Activity	Phenolic	Yield	dant	Phenolic		
			Content		Activity	Content		
\mathbb{R}^2	0.9382	0.9536	0.900	0.9594	0.9876	0.917		
RMSE	0.571	1.871	28.072	0.461	0.998	23.697		

Conclusion:

For the conclusion in this study, the suggested optimum condition of maximum extraction of total yield (11.0557%), antioxidant activity (49.2147%) and total phenolic content (329.476 mg Gallic acid/L) were at temperature = 59.9964° C, pressure= 282.001 bar, particle size=499.9815µm, and percentage of co solvent= 29.9%. The optimum condition was verified by conducted verification analysis and all the percentage of error was less than 5%. Thus it shows that the optimum condition suggested by RSM model was reliable. The SFE parameters of extraction of total yield, antioxidant activity and total phenolic content had been optimized by comparing results from RSM and ANN modelling. The coefficient of determination (R²) and root mean square error (RMSE) were employed to compare the performance of both simulation tools. Based on the results, ANN model shows the higher predicative potential compared to RSM model which the value of (R²=0.9594, 0.9876 and 0.917) respectively and the value of (RMSE= 0.461, 0.998 and 23.697) respectively. Thus, ANN model could be a better alternative in data fitting for SFE for extraction of total yield, antioxidant activity and total phenolic content from *Annona Muricata Leaves*.