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ABSTRACT  

Electromyography (EMG) is a random biological signal that depends on the 
electrode placement and the physiology of the individual. Currently, EMG control 
is practically limited by this individualistic nature and requires per session training. 
This study investigates the EMG signals based on six locations on the lower forearm 
during contraction. Gesture classification was performed en-bloc across 20 subjects 
without retraining with the objective of determining the most classifiable gestures 
based on the similarity of their resultant EMG signals.  Principle component 
analysis (PCA) and linear discriminant analysis (LDA) were the principal tools for 
analysis. The results showed that many gesture pairs could be accurately classified 
per channel with accuracies of over 85%. However, classification rates dropped to 
unreliable levels when up to nine gestures were classified over the single channels. 
The classification results show universal classification based on a common EMG 
database is possible without retraining for limited gestures.  

Keywords: Electromyography, user-independent, rotation-independent, hand 
exchange independent, classification, principal component analysis, linear 
discriminant analysis 

1. Introduction  

The electromyogram (EMG) is the electrical activity produced at the skeletal muscle during 
contraction. With the appropriate electrodes and amplification, it can be detected and used for 
a broad scope of studies, including medical diagnostics, biomechanics, and the design and 
applications of prosthetics and human-machine interfaces (Mane, Kambli, Kazi, & Singh, 
2015). Being a biological signal, the nature of the EMG signal is user specific. The EMG signal 
for machine control is typically processed in two stages: first, feature extraction, which serves 
to reduce the dimensionality of the signal; followed by classification, a prediction algorithm. 
These data processing is performed on computers or embedded systems. Prior to prediction, the 
classifier is first trained multiple times with features from a signal. Once the classifier has 
enough known content to establish class membership, unknown content can be accurately 
evaluated if it belongs to the class or not. Obviously, the accuracy of the predicted class (in this 
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case, hand gestures) depends on the consistency of the training data and the distinction from 
the test data pattern.  
On the application of machine control, EMG machine control remains a novelty and has not 
seen widespread practical applications in spite of the numerous studies, as highlighted by 
Artemiadis (2012) and Jiang, Dosen, Muller, & Farina Jiang et al (2012).  

1. Practical EMG issues: user, hand position and arm exchange independence   

In many reports, the EMG as a machine input signal shows promising results: achieving a 
classifier accuracy of over 90 %. It is well established that a classifier can perform well when 
trained on subject subject-specific cases, as shown by Watts et alet al. (2008) and Souissi, Zory, 
Bredin, & Gerus Souissi et al. (2017). In additionNonetheless, the EMG classifier wiloulld 
usually require retraining on each session, even when applied on the same subject (Liu, Zhang, 
Jiang, & Zhu, 2015; Phinyomark et alet al., 2013) (Phinyomark et al., 2013), (Liu, Sheng, 
Zhang, Jiang, & Zhu, 2016). On multi-user classification, Kerber, Puhl, & Krüger Kerber et al. 
(2017) worked towards classifying up to 40 gestures with a combination of up to10 extracted 
features from 14 users. In their work, Aa common classifier was trained with data from all 14 
subjects. The classification accuracy was obtained at 97% withfor 5five gestures and down to 
16 % when attempting to classify all 40 signals. Therefore, an accuracy of about 70 % is a 
reasonablyrealistic performance good for a nine-class classification, as ascertained by 
Piskorowski.(2013). 
The forearm is a highly articulated limb, capable of many different gestures. However, as shown 
by Leijnse, Campbell-Kyureghyan, Spektor, & Quesada Leijnse (2008), most of the EMG 
recordings have to be made with the arm constrained to specific positions. This is because the 
slightest wrist rotation (pronation and supination) will produce distinctively different EMG 
signals (Yung & Wells, 2013). In addition, Saponas et alet al. (2009) demonstrated that the 
EMG changes as the forearm rotates. On the same matter, Yang, Yang, Huang, & Liu Yang et 
al.  (2017) and Geng, Zhou, & LiGeng et al. (2012) have also shown that the misclassification 
of forearm signals correlates to wrist rotation rather than hand position.  
In response to the problems posed by the varying EMG signal due to wrist rotation, Xu et alet 
al. (2011), Stival, Michieletto, & Pagello Stival et al. (2016), and Fougner, Scheme, Chan, 
Englehart, & Stavdahl Fougner et al. (2011) showed that the rotation independence could be 
improved by using EMG in conjunction with accelerometers. Their methods effectively 
reduced classification error from 18% to 5%. 
On hand-exchange, Kim, Mastnik, & André Kim et al. (2008) noted a negligible difference in 
the EMG of the left and right hand. However, in a later in-depth study, Khushaba (2014) has 
proven otherwise - the data field of the opposite hands are fairly different.  

2. Towards zero-retraining 

Training is necessary in almost every recorded work (Cai et alet al., 2019; Sensinger, Lock, & 
Kuiken, 2009) (Sensinger, Lock, & Kuiken, 2009), (Cai et al., 2019). The purpose of training 
in simple terms is to allow a classifier to learn variations of a class. The classifier then estimates 
the class membership of the fresh data (test data) by comparing it against historical data 
(training data). Training time can range between 10 to 30 minutes (Shenoy, Miller, Crawford, 
& Rao, 2008; Stoica et alet al., 2012) (Shenoy, Miller, Crawford, & Rao, 2008) to 30 minutes 
(Stoica et al., 2012). Some works have tried to address the issue, by proposing methods to 
accommodate a small training data set (Sun & Chen, 2012), and even eliminating the training 
session (Liu, Zhang, Jiang, & Zhu, 2015). However, Phinyomark et alet al. (2013) reported that 
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classification accuracy dropsped when retraining is not performed. Therefore, classification 
accuracy is also a measure of the retraining scheme and cannot be entirely disregarded.  
In recent years, there has been some interest in eliminating retraining. Huang, Zhang, Sun, & 
He Huang et al. (2010) and Liu et alet al. (2015) introduced methods that provided reliable 
classification without retraining. On the other hand, Phinyomark (2013) showed a novel sample 
entropy feature with LDA classification could reduce the gap of zero retraining by a margin of 
2.5%.  However, these methods were performed with limited subjects. wWith the introduction 
of cross user non-retraining, Stival et alet al. (2016) obtained mixed results in classification 
accuracy. In conclusion, these works show that common data exists between individuals, 
despite the various physiological differences. 

3. Problem statement and objective of the study 

In practical applications, the device may be used by various individuals at different hand 
positions. Per-session training, although essential, is not practically viable. Since the possibility 
of zero-retraining was implied, this study aims to study the gap between the accuracy and 
practicality of cross-subject hand gesture classification in lieu of classifier retraining.  
This study aims to determine the effect of hand rotation towards the classification accuracy of 
hand gestures in the influence of multiple users. The results would suggest the best classifiable 
gestures, which are not only compatible across various individuals, but also robust towards arm 
rotation.  
 

    
 

CH1-CH3 
 

CH4-CH6 
 

Flex (FLX) Extend (EXT) Abduct (ABD) 
   

Adduct (ADD) Open (OPN) Close (CLS) 
   

Thumb (TMB) OK (OKE) Finger (FIN) 

Figure 1: Gestures performed for classification. There are six wrist gestures: FLX, 
EXT, ABD, ADD, OPN and CLS; and three three-finger gestures: FIN, TMB, and 

OKE. The gestures were recorded in sequence with the arm down in natural position. 
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2. Research Questions 

1. To study the classification accuracy of hand gestures over a multi-subject data field in 
a realistic environment, the following research questions have been established: 

2. In a multi-subject session, by how far does the forearm rotation affect classification 
accuracy? 

3. In the influence of wrist rotation, which gestures is the most easily classifiable (highest 
classification accuracy)? 

 

3. Methodology 

1. Subject Demographics and Equipment 

Twenty right-handed subjects, consisting of 10 males and 10 females participated in the study.  
The subject’s demography ranges from age 24-42 with a mean age of 30. The BMI of the 
subjects ranged from 15 to 32 with a mean of 23, with 55% having a normal BMI class. No 
movement restriction or pain associated with the wrist and finger were reported. However, two 
subjects, one male and female, reported to have having mild essential tremor. All subjects 
voluntarily gave written informed consent to participate in the experiment. 
The EMG amplifier was designed specifically for this experiment. The design, which was based 
on the INA121P instrumentation amplifier has an effective CMRR of 78.64 dB and adjustable 
gain of 250. Pre-processing methods incorporated into the design consisted of a bandpass filter 
with a range of 18.97 Hz to 709 Hz. More details on our design can be found in (Fu, Bani 
Hashim, Jamaludin, & Mohamad, 2016) and (Fu, Bani Hashim, Jamaludin, Mohamad, & Nasir, 
2017). The data was acquired with the National Instruments NI-cDAQ 9178 data acquisition 
unit (DAC) with the NI9205 input module, sampled at 5 kHz and LabVIEW as the user 
interface. Post-processing was done with the Matlab 2010 software. 
Six pairs of Ag-Cl wet electrodes were placed with equal distance around the lower forearm, at 
about 30 mm below the elbow. An additional reference electrode was attached to the elbow. A 
shielded cable was used to connect the EMG amplifier to the electrodes. With the arm at neutral 
position, placing began with CH1 placed directly below the elbow, on the posterior side of the 
forearm. The other channels are then placed at de =  × circumference. With the electrodes placed, 
the electrodes were connected to the EMG amplifier with shielded cables.  
The subjects performed the nine gestures, in a sequence flex (FLX), extend (EXT), abduct 
(ABD), adduct (ADD), open (OPN), close (CLS), finger (FIN), OK (OKE) and thumb (TMB), 
as shown in Figure 1. The gestures were performed with the left hand (LH) in neutral position 
(DN), followed by wrist pronation (DP) and supination (DS). The procedure was repeated on 
the right hand (RH).  
The EMG data from the gestures were then classified individual channels in two cases: pair-
wise gesture per channel, and all gestures per channel. In both cases, the classification accuracy 
of the gestures in DN position was compared to that of the DP and DS position. 
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2. Data reduction and gesture classification 

Prior to analysis, signal conditioning was performed unto on the EMG waveforms done to 
eliminate transient conditions. Rectification followed by a 10 Hz linear envelope feature 
extraction. Next, the stochastic EMG signal was smoothened and simplified to results 
comparable to moving average (MAV), and root mean square (RMS) features. The reduced 
waveform would be more efficient for post-processing. The repetitive time-varying dimension 
is further reduced with principal component analysis (PCA), which effectively reduces the 
dimensionality of the dataset.  
The PCA is an orthogonal linear transformation that decorrelates the multivariate data and 
projects it onto a new coordinate system, where the greatest variance lies on the first axis, 
followed by the next greatest variance on the following axis.  If a vector, z of length N has M 
observations, then the PCA transform is performed first by subtracting the mean from the vector  
 
           (1) 
The covariance matrix C is defined as 
         (2) 
The principle components, PC of , are defined in terms of the unit-length eigenvectors (

 of C, giving 
     .    (3) 
The projection matrix, W contains the eigenvectors ( . The M observations are 
normally exemplars taken from any one of the C classes.  
 
The dataset representing all gestures performed in all states of the arm is stored in a six-
dimension matrix in the order of subject, channels:   
 
   D ={ DS1-S20, DLH-RH, DP,N,S, DG1-G20, DCH1-CH6}.  (4) 
 
The result of the PCA dimensionality reduction can be plotted to show separation of the 
gestures. The PCA representation can be easily separated with from Linear discriminant 
analysis (LDA), a powerful method for classifying EMG patterns (Phinyomark, 2013).   
The LDA is a supervised classifier, whereby classes must be pre-defined before training is done. 
LDA works on the principles of Baye’s Theorem, which estimates the probability of the data 
belonging to each class. With the input class as x(k), the probability of the output class (k) is 
given by,  
 

 

 
PIk refers to the base probability of each class (k) observed in the training data, defined as: 
 

 

The LDA assumes the probability of x belonging to a class is, f(x) is Gaussian. Therefore, the 
discriminant function Dk(x) is given as: 
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Dk(x) is the discriminate function for class k, given input x.  
 
Classification was performed on two gesture classes per channel. Therefore, all possible gesture 
pairs e.g., FLX-EXT, FLX-ABD FLX-ADD were iterated and individually classified across the 
six channels. The classification was repeated on every state: LH, RH, DN, DP, DS. The effect 
of rotation (pronation and supination) of the forearm towards the classification accuracy serves 
as a measure of how robust the gesture is towards forearm rotation. 
 

4. Results and Discussion 

A sample of the acquired raw EMG waveform is shown in Figure 2 (a). The gestures were 
performed in a sequence that lasted about 30 seconds, which each gesture typically about 1.5 
seconds long. The dynamics of the EMG output varies over the channels. For instance, the FLX 
gesture is more significant in CH3 and CH4 as opposed to other channels, indicating that these 
channels may be more useful for classifying these gestures.  CH1 and CH2 also display less 
dynamics compared to other channels. Some ECG contamination can be observed in CH5. The 
frequency response is shown in Figure 2 (b) indicates that the bulk of the EMG activity lies at 
the 100 Hz region. A 10 Hz linear envelope shown in Figure 2 (c) was applied to shape the 
EMG waveform. As shown hereIn general, 10 Hz is sufficient to retain the transient shape of 
the waveform. For each hand per subject, there were 27 gestures (9 gestures x 3 position).  
 

Figure 2: The rectified waveform (grey) is filtered with a 2nd order low pass filter. Shown 

  

(a
)                                                                                  

(b)               

(c)               
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are the effects of a 20Hz, 10Hz and 5 Hz filter. 

1. Results of PCA dimensionality reduction 

The results of the PCA dimensionality reduction is shown in Figure 3. The centroid of the 
gesture, which represents the mean signal of the 20 subjects and its standard deviation (STD) 
is shown in Figure 3. The size of the circular perimeter indicates the similarity of the EMG 
wave of the gesture. To provide the grounds for good classification, each gesture points should 
be well separated with a small STD radius. If the pronation, supination and neutral markers are 
in place, it shows that the channel-gesture is resistant to wrist rotation. 
For the plot, the three markers (triangle, star, and circle) represent a gesture in neutral, 
pronation, and supination. The shapes represent the state of the forearm rotation: circle for 
neutral, star for pronated and triangle for supinated. Ideally, the markers of the gestures in all 
three forearm positions should be at the same location, with the smallest radius. The wider 
distance between these markers indicates pattern shift due to rotation. For the left-hand sample, 
the gesture with the shortest distance is the ADD gesture with 0.008, while the greatest distance 
is in the ABD gesture with 0.05. With regard to the STD, a small and consistent boundary circle 
indicates that the gesture is similar across the subject sample. For LH, the lowest mean STD is 
in the FIN group, with a mean of 0.01. The most consistent gesture is ADD while the EXT and 
ABD gestures have the highest SD of 0.06 and 0.08, respectively.  
 

 

Figure 3: The scatter plot of FLX.LH.CH1 represented by the mean centroid 
(coordinate) and standard deviation (radius) of 20 subjects, displayed with the top 2 
principal components. The plot shows that the centroid and its region overlaps with 

other gestures. A single channel does not capture enough EMG variation to classify all 
the nine gestures, hence, the overlaps of data. 
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2. Results of classification of pair-wise gestures over individual channels 

To better represent the data, the gestures were re-rendered into a 9 x 9 scatter plot matrix, as 
shown in Figure 4 where the individual gestures are plotted in pairs. By placing the signals in 
pairs, e.g., FLX-EXT, FLX-ABD, FLX-ADD etc., there will be more room for cluster 
separation. The axes are PC1 (82%) and PC2 (9%), which weights in 91% of the variations.  
The reconstructed scatter plot matrix of the gesture performed by subject F01 FLX.DN.LH 
shown here is divided into all possible gesture pairs. The first row shows the FLX against other 
gestures, while the second row features the EXT and so forth. The class separation is more 
evident now; the FLX-EXT pair shows good separation, which is consistent with previous 
results. Figure 5 renders the close up of the gesture pair FLX-EXT, which shows good 
separation and TMB-OKE which is poorly separated.  
Generally, the wrist gestures have a better classification rate compared to finger gestures. Good 
A good classification rate of above 80% can be achieved between wrist gestures, wrist-finger 
gestures but not finger-finger gestures. Due to their low and indistinctive amplitude signals, the 
finger-finger gestures have a high error rate.  

 

3. Effects of forearm rotation towards classification accuracy 

Table 1 shows the top five classification results of the single-channel analysis. All possible 
gesture pairs were classified against each other, amounting to 81 gesture pairs per position per 
hand. Due to the number of results, only the five gesture pairs with the best results per channel 
are displayed. The colour scale represents the classification accuracy of the pair. The true 
positive classification rate ranges from 80% to 97.5%. This is an indicator by of how far two 
gestures are distinct in a channel.  
The gestures in at the top of the list represent the best classifiable gesture pair. In CH1 of the 
left hand, the EXT gesture is highest for both hands in all positions with 10 counts of 
occurrence. This means the EXT gesture is significant against the other gestures i.e., OPN-
EXT, EXT-FLX. Thereafter, CH2-CH6 does not exhibit any similarities between the two 
hands. For the left hand, CH2 to CH6 recorded OPN, FIN ABD, ADD, and FIN, while the right-
hand registered FIN, EXT, EXT, FIN, FIN respectively.  
 

 

Figure 4: Scatter plot matrix sample of 20-subject LH CH1 separated by gestures. Red 
markers represent the Column element while the green elements represent the row 
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elements. Some of the gestures exhibit good separation, in this case, the FLX-EXT 
gesture pair. The plot axes show the first two principle components. Class separation is 

in fact higher because six principle components were used for classification.  

 
Linear discriminant analysis (LDA) was applied to classify the signals, with the first six PCs. 
The results of classification for FLX-EXT and OKE-TMB gesture pairs are shown in Figure 5. 
A high classification rate will signify that the gestures and their signals are distinct. For 
instance, the FLX-EXT pair gesture scored an overall accuracy of 85% with 100% classification 
rate for FLX and 80% for EXT. However, the TMB–OKE gesture, the TMB gesture had a 
classification rate of 60% while the OKE gesture was 85%. As a result, the overall accuracy is 
72.5% 
By looking at the type of gesture pairs, the highest occurrence is the wrist-wrist gesture with 70 
counts or 46% followed by wrist-finger (77 counts, 51%). The finger-finger gestures only 
constitute 3 counts (0.02%) to the results. Further observation also shows that the EXT gesture 
has the highest classification occurrence with a total of 77 counts followed by FIN (70) and 
ABD (54). The lowest attainable classification is the TMB with 21, followed by OKE with 23.  
 

 

(a)         (b) 

Figure 5: Close up PCA plot of (a) LH CH 1FLX-EXT, 85% c.a. and (b) TMB-OKE 
pair, 72.5% c.a. gestures. In general, the arm gestures have better separation compared 
to finger gestures. Gestures with better separation will result a higher classification rate. 
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Figure 6: Effect of forearm rotation towards gesture-pair classification. Since there are 
only two classes, the classifier is able to predict the gestures accurately.   

 

Table 1: Summary of multi-gesture classification, showing gestures with the highest 
classification accuracy per channel. This data suggests the most significant gesture 

obtainable from a certain channel. 

    DN DP DS 

LH 

CH1 FIN 70 FIN 70 FIN 60 
CH2 ABD 50 OKE 55 TMB 70 
CH3 EXT 55 FLX 55 FLX 60 
CH4 ABD 50 OPN 65 ABD 80 
CH5 FIN 70 ADD 75 ADD 70 
CH6 FIN 60 OPN 45 EXT 55 

RH 

CH1 FIN 60 FLX 60 EXT 55 
CH2 FIN 60 FIN 50 FIN 60 
CH3 EXT 70 FLX 65 FLX 65 
CH4 OPN 60 FLX 60 ABD 75 
CH5 ADD 60 ADD 55 ADD 65 
CH6 FIN 55 FIN 70 TMB 45 

 

Table 12: Top five classified gesture pairs in all three positions for each channel, ranked 
by accuracy. The results show that the best classified gesture of the LH does not mirror 

to the RH. Generally, the wrist gestures have better classification rates compared to 
finger gestures. 

DN 
LEFT HAND RIGHT HAND 

CH1 CH2 CH3 CH4 CH5 CH6 CH1 CH2 CH3 CH4 CH5 CH6 
OPN
-
EXT 

OPN
-
ABD 

FIN-
EXT 

AD
D-
ABD 

AD
D-
ABD 

OKE
-FIN 

CLS
-
EXT 

FIN-
EXT 

AD
D-
EXT 

EXT
-
FLX 

FIN-
EXT 

FIN-
EXT 
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EXT
-
FLX 

CLS
-
OPN 

OKE
-FIN 

OPN
-
ABD 

FIN-
AD
D 

OPN
-
ABD 

OKE
-
EXT 

OKE
-
EXT 

CLS
-
EXT 

AD
D-
EXT 

FIN-
AD
D 

FIN-
ADD 

AD
D-
EXT 

FIN-
ABD 

OKE
-
FLX 

FIN-
ABD 

OKE
-
AD
D 

FIN-
AD
D 

EXT
-
FLX 

FIN-
FLX 

FIN-
FLX 

OPN
-
EXT 

FIN-
CLS 

FIN-
OPN 

FIN-
EXT 

OPN
-
FLX 

OKE
-
AD
D 

FIN-
AD
D 

TM
B-
ABD 

FIN-
EXT 

FIN-
EXT 

CLS
-
EXT 

OPN
-
FLX 

CLS
-
EXT 

ABD
-
EXT 

FIN-
CLS 

OKE
-
EXT 

OKE
-
FLX 

TM
B-
AD
D 

TM
B-
FIN 

ABD
-
FLX 

FIN-
ABD 

FIN-
ABD 

TM
B-
EXT 

EXT
-
FLX 

FIN-
FLX 

OKE
-
AD
D 

ABD
-
EXT 

DP 
LEFT HAND RIGHT HAND 

CH1 CH2 CH3 CH4 CH5 CH6 CH1 CH2 CH3 CH4 CH5 CH6 
EXT
-
FLX 

CLS
-
FLX 

FIN-
OPN 

FIN-
AD
D 

AD
D-
ABD 

FIN-
EXT 

TM
B-
EXT 

FIN-
FLX 

TM
B-
FLX 

EXT
-
FLX 

FIN-
EXT 

FIN-
EXT 

ABD
-
EXT 

FIN-
FLX 

CLS
-
EXT 

AD
D-
ABD 

OPN
-
AD
D 

EXT
-
FLX 

EXT
-
FLX 

CLS
-
FLX 

EXT
-
FLX 

ABD
-
FLX 

FIN-
AD
D 

FIN-
OPN 

CLS
-
EXT 

OKE
-
FLX 

FIN-
EXT 

TM
B-
AD
D 

FIN-
AD
D 

CLS-
OPN 

ABD
-
FLX 

OKE
-
EXT 

OPN
-
FLX 

CLS
-
EXT 

OKE
-
AD
D 

EXT
-
FLX 

TM
B-
EXT 

TM
B-
FLX 

OKE
-
OPN 

AD
D-
EXT 

OKE
-
AD
D 

ABD
-
EXT 

AD
D-
EXT 

TM
B-
EXT 

OKE
-
FLX 

TM
B-
FLX 

TM
B-
FIN 

ABD
-
EXT 

FIN-
EXT 

AD
D-
FLX 

EXT
-
FLX 

OPN
-
EXT 

ABD
-
EXT 

TMB
-
EXT 

FIN-
EXT 

FIN-
EXT 

CLS
-
FLX 

FIN-
FLX 

AD
D-
ABD 

FIN-
ADD 

DS 
LEFT HAND RIGHT HAND 

CH1 CH2 CH3 CH4 CH5 CH6 CH1 CH2 CH3 CH4 CH5 CH6 
FIN-
EXT 

FIN-
EXT 

FIN-
FLX 

AD
D-
ABD 

ABD
-
FLX 

OPN
-
FLX 

FIN-
ABD 

FIN-
FLX 

CLS
-
EXT 

AD
D-
ABD 

ABD
-
EXT 

FIN-
EXT 

TM
B-
FLX 

OKE
-
FLX 

FIN-
EXT 

OPN
-
ABD 

ABD
-
EXT 

FIN-
OPN 

FIN-
EXT 

TM
B-
EXT 

EXT
-
FLX 

CLS
-
ABD 

FIN-
EXT 

ABD
-
EXT 
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CLS
-
EXT 

OPN
-
EXT 

TM
B-
ABD 

FIN-
OPN 

AD
D-
ABD 

EXT
-
FLX 

ABD
-
FLX 

TM
B-
FLX 

ABD
-
FLX 

ABD
-
FLX 

FIN-
AD
D 

OPN
-
FLX 

TM
B-
EXT 

TM
B-
FLX 

TM
B-
FIN 

TM
B-
ABD 

FIN-
FLX 

FIN-
EXT 

CLS
-
EXT 

FIN-
EXT 

ABD
-
EXT 

FIN-
CLS 

AD
D-
ABD 

FIN-
ADD 

TM
B-
CLS 

TM
B-
FIN 

TM
B-
EXT 

OPN
-
EXT 

FIN-
EXT 

CLS-
EXT 

TM
B-
EXT 

OPN
-
FLX 

CLS
-
FLX 

OKE
-
CLS 

OKE
-
AD
D 

TMB
-
FLX 

Classification accuracy scale, in percent 
100 97.5 95 92.5 90 87.5 85 82.5 80 

Table 1: Summary of multi-gesture classification, showing gestures with the highest 
classification accuracy per channel. This data suggests the most significant gesture 

obtainable from a certain channel. 

    DN DP DS 

LH 

CH1 FIN 70 FIN 70 FIN 60 
CH2 ABD 50 OKE 55 TMB 70 
CH3 EXT 55 FLX 55 FLX 60 
CH4 ABD 50 OPN 65 ABD 80 
CH5 FIN 70 ADD 75 ADD 70 
CH6 FIN 60 OPN 45 EXT 55 

RH 

CH1 FIN 60 FLX 60 EXT 55 
CH2 FIN 60 FIN 50 FIN 60 
CH3 EXT 70 FLX 65 FLX 65 
CH4 OPN 60 FLX 60 ABD 75 
CH5 ADD 60 ADD 55 ADD 65 
CH6 FIN 55 FIN 70 TMB 45 

 

The gesture pairs also do not match across the hands and position. For instance, the left hand 
CH6 top result pair is OKE-FIN (97.5%), while in place for the right hand is FIN-EXT (85%). 
The result across the table shows the same inconsistency. As a conclusion, there is no single 
channel which can significantly produce a gesture signal which is distinct enough to be 
associated with the respective channel. The analysis is advanced to determining the gesture 
pairs that retain classification rates when subjected to rotation. From the results, there are two 
observations: first, the top classification results change considerably with rotation. This 
suggests that rotation shifts the muscles beneath the electrodes and also, the EMG signals from 
the rotation are mixed with the signals of the gestures, which results a different EMG pattern. 
Next, the top classifiable EMG patterns are not the same for the two hands.  
For every channel, the distance between the arm position markers signifies the variance of the 
signal. The closer the three markers mean the spread (variation) of the signal remains the same 
in spite of rotation. Ideally, the stems should be high and possess little variations in the arm 
rotation markers. There is no correlation between the results of the two hands. For LH, CH6 
exhibits the most counts of low standard deviation (6 counts) while in RH, it is CH2 (7 counts).  
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A summary of the classification results of the top five gestures in Table 2 is shown in 
Figure 6. For a two-class gesture, the classifier can predict with excellent results, and 

accuracy change due to forearm rotation is negligible. 

 

Table 2: Summary of multi-gesture classification, showing gestures with the highest 
classification accuracy per channel. This data suggests the most significant gesture  

obtainable from a certain channel. 
    DN DP DS 

LH 

CH1 FIN 70 FIN 70 FIN 60 
CH2 ABD 50 OKE 55 TMB 70 
CH3 EXT 55 FLX 55 FLX 60 
CH4 ABD 50 OPN 65 ABD 80 
CH5 FIN 70 ADD 75 ADD 70 
CH6 FIN 60 OPN 45 EXT 55 

RH 

CH1 FIN 60 FLX 60 EXT 55 
CH2 FIN 60 FIN 50 FIN 60 
CH3 EXT 70 FLX 65 FLX 65 
CH4 OPN 60 FLX 60 ABD 75 
CH5 ADD 60 ADD 55 ADD 65 
CH6 FIN 55 FIN 70 TMB 45 

 

4. Classification of all nine gestures over a single channel 

Figure 7 shows a summary of the classification results of all single channels. The classification 
results of both hands in all three positions are shown with the corresponding markers. As seen 
in the previous analysis, the DN-DP-DS gestures and the LH-RH gestures are unrelated in terms 
of classification accuracy. Generally, classification results are low, with an average of 34% and 
30% for the LH and RH, respectively.  
Table 2 shows the gesture with the highest classification accuracy for every channel. The FIN 
gesture dominates the table with five occurrences in the LH, ranging from 60%-70% and seven 
in the RH ranging from 55%-65%. Across the hands, only CH3 shows consistency of having 
the same gestures, namely EXT, FLX, FLX for the DN, DP and DS position. Across the 
rotations, the highest consistency can be observed at LH.CH1 with FIN (70%) while for 
RH.CH5 with ADD, 60% (mean).  
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Figure 7: Effect of forearm rotation towards the classification of all nine gestures 
in one channel. A single channel cannot register enough pattern variations to 

accurately separate the gesture classes.  In this case, the classification accuracy is 
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affected by rotation for some gestures, although the effect is not uniform-some 
gestures are more greatly affected than others. 

The gesture pairs also do not match across the hands and position. For instance, the left hand 
CH6 top result pair is OKE-FIN (97.5%), while in place for the right hand is FIN-EXT (85%). 
The result across the table shows the same inconsistency. As a conclusion, there is no single 
channel which can significantly produce a gesture signal unique enough to be associated with. 
The analysis is advanced to determining the gesture pairs that retain classification rates when 
subjected to rotation. From the results, there are two observations: first, the top classification 
results change considerably with rotation. This suggests that rotation shifts the muscles beneath 
the electrodes and also, the EMG signals from the rotation are mixed with the signals of the 
gestures, which results a different EMG pattern. Next, the top classifiable EMG patterns are not 
the same for the two hands.  
For every channel, the distance between the arm position markers signifies the variance of the 
signal. The closer the three markers, means the spread (variation) of the signal remains the same 
in spite of rotation. Ideally, the stems should be high and possess little variations in the arm 
rotation markers. There is no correlation between the results of the two hands. For LH, CH6 
exhibits the most counts of low standard deviation (6 counts) while in RH, it is CH2 (7 counts).  
A summary of the classification results of the top five gestures in Table 2 are shown in Figure 
6. For a two-class gesture, the classifier can predict with excellent results, and accuracy change 
due to forearm rotation is negligible. 

5. Classification of all nine gestures over a single channel 

Figure 7 shows a summary of the classification results of all single channels. The classification 
results of both hands in all three positions are shown with the corresponding markers. As seen 
in the previous analysis, the DN-DP-DS gestures and the LH-RH gestures are unrelated in terms 
of classification accuracy. Generally, classification results are low, with an average of 34% and 
30% for the LH and RH, respectively.  
Table 1 shows the gesture with the highest classification accuracy for every channel. The FIN 
gesture dominates the table with five occurrences in the LH, ranging from 60%-70% and seven 
in the RH ranging from 55%-65%. Across the hands, only CH3 shows consistency of having 
the same gestures, namely EXT, FLX, FLX for the DN, DP and DS position. Across the 
rotations, the highest consistency can be observed at LH.CH1 with FIN (70%) while for 
RH.CH5 with ADD, 60% (mean).   

5. Limitations of Study and Its Implications 

Gesture strength and timing was not strictly enforced. Subjects were free to perform the gestures 
in the manner they are comfortable with. As a result, the EMG variations that manifest are not 
only due to physiological differences, but also how the subject performed the gesture. As a 
remedial measure, care was taken when attaching the electrodes to ensure that variations due to 
electrode placements are minimized.  
During recording, the nine gestures were performed in succession for each arm position. These 
gestures were manually spliced during post-processing. Therefore, the EMG variation due to 
neutral to pronation or supination movement was not accounted for in this study. Since the 
classification was performed offline, the wrist rotation signal can be ignored. However, in real-
time classification, the wrist rotation should be included as a gesture. 
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6. Conclusions and Suggestions for Future Work  

During the two-channel classification, good results of over 80% were attainable. However, with 
all gestures in the classifier, the results deteriorated to 30%. In this procedure, the single-
channel analysis was performed to discover which signal is most classifiable per channel. First, 
for a pair of gestures, the classifier could clearly classify (above 90% accuracy rate) the wrist-
wrist and wrist-finger gestures as opposed to the finger-finger gestures. However, when the 
classifier was introduced to all nine gestures, classification accuracy deteriorates due to the high 
amount of repetitive data.  
Therefore, it has been established that accuracy of over 90% is achievable for subject 
independent, rotation independent gestures if there is only one pair of wrist-finger gesture 
involved.  
We have shown that it is possible to classify wrist and finger gestures with common data pool. 
This is beneficial in practical application where retraining can be eliminated for various users. 
By limiting the number of gestures and selection of gestures, acceptable results are possible 
with a single set of training data.  
We have also revealed that some gestures including the FIN, FLX and EXT retained a high 
classification accuracy across the rotation. This indicates that these signals do not change much 
when subjected to rotation. Normally a gesture in rotation requires separate training as different 
gestures. In the case of this study, the nine gestures in three arm positions will require three sets 
of training data. However, the result of our study indicates that a gesture in rotation can 
recognized as a single gesture. As a result, a single dataset of nine gestures in neutral position 
can be classified with test data from the pronation and supination positions. This will greatly 
further reduce training data as a gesture can be trained as a singular class for all three arm 
positions. The immediate benefits are a lighter computational burden: a reduced dataset enables 
a reduced setup time, and possibly faster and more accurate classification.  
For future work, we recommend multi-channel classification, with training data from the neutral 
position used to classify test data from the pronation and supination position. The simultaneous 
multivariate data from six channel will provide improved separation between gestures and 
hence, higher classification accuracy. 

Conclusion  

It can be concluded with certainty that the nine gestures in neutral, pronation and supination 
must be treated as individual signals: this sums as 27 gestures per channel. During the two-
channel classification, good results of over 80% were attainable. However, with all gestures in 
the classifier, results deteriorated to 30%. Furthermore, there is little correlation between the 
classification results, whether between hands or forearm rotation. The next process of the 
research would advance to assessing the signals collectively.  
In this procedure, the single-channel analysis was performed to discover which signal is most 
classifiable per channel. First, for a pair of gestures, the classifier could clearly classify (above 
90% accuracy rate) the wrist-wrist and wrist-finger gestures as opposed to the finger-finger 
gestures. However, when the classifier was introduced to all nine gestures, classification 
accuracy deteriorates due to the high amount of repetitive data.  
Therefore, it has been established that accuracy of over 90% is achievable for subject 
independent, rotation independent gestures if there is only one pair of wrist-finger gesture 
involved.  
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