WAVELET ANALYSIS: MULTIPATH MITIGATION FROM GPS CARRIER PHASE OBSERVATION

This thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.) Universiti Teknologi MARA.

MOHD RIJAL BIN SHUKRI

Faculty of Electrical Engineering

UNIVERSITI TEKNOLOGI MARA

40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Beneficent, the Most Merciful. All praise to Allah for the entire incredible gift endowed upon me and for giving the health and strength to keep up the study and enable me to prepare and complete this thesis.

I would like to acknowledge the people who made this project possible my supervisors, Mr. Mohamad Huzaimy Jusoh and Mrs. Norsuzila Ya'acob and also Dr. Ngah Ramzi Hamzah for their kindness, support, and concern in providing valuable ideas, suggestions and guidance's throughout the course. Their input has afforded immeasurable help during my study.

I am also indebted to the various help and discussion offered by my fellow friends to overcome the obstacles that arise during the implementation process. Thank you and may Allah bless and reward them for their generosity.

Last but not least, a special thank to my family for their prayer and support.

My sincere thank to all of you.

ABSTRACT

Multipath mitigation techniques using wavelet decomposition is proposed for extracting or modeling multipath from Global Positioning System (GPS) carrier phase observations. Multipath is a phenomenon whereby satellite signals can arrive at the receiver via multiple paths, due to reflections from nearby objects such as trees, buildings, the ground, water surfaces, vehicles, etc. It can be reduced by choosing sites without multipath reflectors or by using choke-ring antennas to mitigate the reflected signal. Wavelet transform (WT) is a new tool for signal analysis that can provide simultaneously, time and frequency information of a signal sequence. The wavelet is of interest for the analysis of non- stationary signal such as GPS observations because it provides an alternative to classical Fourier Transform, which assumes stationary in signals. Double Differencing (DD) technique was use to detect the multipath effect.

TABLE OF CONTENTS

DECLARATION	i
ACKNOWLEDGEMENTS	li
ABSTRACT	វវវ
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xv

CHAPTER	DESCRIPTION		
1	INTRODUC		
1	1.1 BACKGR	OUND	1
	1.2 OBJECTI	VES	2
	1.3 SCOPE O	F PROJECT	2
	1.4 ORGANI	ZATION OF PROJECT REPORT	.3
2	LITERATU	RE REVIEW	
	2.1 GLOBA	L POSITIONING SYSTEM (GPS)	4
	2.2 GPS SY	STEM SEGMENTS	4
	2.2.1	Space Segment	5
1	2.2.2	Control Segment	6
	2.2.3	User Segment	7
,	2.3 GPS SA	TELLITE SIGNAL CHARACTERISTICS	8
e	2.4 GPS OE	SERVABLES	9
	2.4.1	Code Pseudorange	9
r	2.4.2	Phase Pseudorange	10
k.	2.5 GPS ER	ROR SOURCE	10

iv

	2.5.1	Selective Availability (SA)	11
	2.5.2	Atmospheric Effects	11
2.5.2.1 Ionospheric Delay			12
	2.5.2.2	2Tropospheric Delay	12
	2.5.3	Multipath Effect	13
2.6	BASELI	NE SOLUTION BY LINEAR	
	COMBIN	ATION	15
	2.6.1	Single differencing	15
	2.6.2	Double differencing	17
	2.6.3	Triple differencing	18
	2.6.4	Differencing Equations	18
2.7	SIGNAL	PROCESSING USING WAVELET	20
	2.7.1	Concept of Wavelet Transform	20
	2.7.2	Selection of Mother Wavelet	21
	2.7.3	Discrete Wavelet Transform	23
	2.7.4	Discrete Wavelet Transform Algorithm	25

METHODOLOGY

3

.

3.1 INTROE	28	
3.2 DATA A	29	
3.2.1	GPS Data in RINEX Format	30
3.2.2	Software	31
3.2.2	31	
3.2.2	2.2MATLAB Software	33
3.3 METHO	D	33
3.3.1	Wavelet Transform Using MATLAB	33
3.3.1	33	
3.3.1	34	
3.3.1	35	
3.3.1	.4 Signal De-noising	35

v