TRANSPORT CURRENT DENSITY PERFORMANCE OF DOPED TL1212 SUPERCONDUCTOR TAPES IN MAGNETIC FIELD

PREPARED BY:

MOHD ISA MOHD YUSOF AHMAD KAMAL HAYATI BIN YAHYA SYED YUSAINEE SYED YAHYA

DECEMBER 2006

ACKNOWLEDGEMENTS

We would like to thank the Institute of Research Development and Commercialisation, Universiti Teknologi MARA (UiTM) for providing the financial support for this research project under IRDC grant in the period of December 2004 to December 2005. Without the financial assistance this project may not be possible.

We are indebted to Dr Zaiki Awang from Microwave Centre, Faculty of Electrical engineering, Universiti Teknologi MARA (UiTM) and Ms Rohani Omar, Research Assistance, UiTM for their technical assistance in various aspects which are crucial in this study.

Our greatest and ultimate debt and gratitude is due to Allah, the Most Beneficent and the Most Merciful. May He pardon and forgive our weaknesses and endow us with knowledge and wisdom.

CONTENTS

					Page
ACKNOWLED	GEMENTS				IV
CONTENTS					
LIST OF FIGURES					
LIST OF SYMI	BOLS AND ABBR	REVIATION	S		XIV
LIST OF TABL	LES				XVI
ABSTRACT					XV11
CHAPTER I	INTRODUCTI	ON			
1.1	High Temperatu	are Supercoi	nductor Dip (Coated Tapes	4
1.2	Objectives	of	the	Study	7
1.3	Significance	of	the	Study	8
CHAPTER II	BACKGROUN	D OF SUPI	ERCONDUC'	ΓΙVΙΤΥ	
2.1	Introduction				
2.2	Properties of Superconductors				10
	2.2.1 Critical Temperature (T_c)				
	2.2.2 The Meissner Effect				
	2.2.3 Critical Magnetic Field				
	2.2.4 Critical Current Density (J_c)				
	2.2.5 Types of S	Superconduct	ors		14
	2.2.5.1 Ty	pe I Superco	nductor		14

2.2.5.2 Type II Superconductor					
The History of Superconductors					
Theory of Superconductor - The BCS Theory					
Relation Between J_c , T_c and H_c					
High Temperature Superconductors and Related Compounds	21				
2.6.1 YBCO Superconductors					
2.6.2 Thallium Based Superconductors					
2.6.2.1 The Tl-1212 System					
Fabrication of HTS Tapes	25				
2.7.1 Powder-in-Tube Tapes					
2.7.2 Dip Coating Tapes					
Transportation Model In HTS Tapes					
Superconductor Applications					
SAMPLES PREPARATION AND EXPERIMENTAL DETAILS	37				
Preparation of In-Doped Bulk Samples					
Preparation of Dip-Coated Tape					
Basic Sample Characterization Methods					
3.3.1 X-ray Powder Diffraction					
3.3.2 Electrical Resistance Measurement at 16 K to 300 K					
3.3.3. Scanning Electron Microscope (SEM)					

ABSTRACT

Superconducting powder from high purity chemicals with nominal composition of Tlo.gBio.iSri.glno.iCaosiYo.iQ^Oy were used to fabricate Tl-1212/Ag superconducting tapes using the dip-coating (DC) method. The tapes were subjected to reannealing under different heating conditions where some of the tapes were subjected to intermediate mechanical rolling. Results showed that annealing temperature together with intermediate mechanical rolling (IR) could be optimized to increase T_c and 1212 phase formation and J_c of In-substituted Tl-1212/Ag tapes. The highest J_c was observed for the tape, which was reannealed at 910 °C for a total duration of 60 minutes and subjected to IR. The increased J_c could be due to the densification of superconducting core and the increase in 1212 phase after thermomechanical treatment. The performance of J_c of the tapes in external magnetic fields showed existence of weak links at low fields (< 0.2 T) followed by strong links which are dominant at higher fields.