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Abstract 
Visual target tracking is an important research element in the 
field of computer vision. The applications are very wide. In 
terms of the computer vision field, deep learning has 
achieved remarkable results. It has broken through many 
complex problems that are difficult to be solved by traditional 
algorithms. Therefore, reviewing the visual target tracking 
algorithms based on deep learning from different 
perspectives is important. This paper closely follows the 
tracking framework of target tracking algorithms and 
discusses in detail the traditional visual target tracking 
methods, the mainstream single target tracking algorithms 
based on correlation filtering, and the video single target 
tracking algorithms based on deep learning. Experiments 
were conducted on OTB100 and VOT2018 benchmark 
datasets, and the experimental data obtained were analysed 
to derive two visual single-target tracking algorithms with 
optimal tracking performance. Finally, the future development 
of tracking algorithms is envisioned.  
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1 Introduction 

Visual target tracking is a fundamental 
and important research topic in the field of 
computer vision, which has received a 
great deal of attention from scholars. Given 
the state (position and size) of a target in 
the first frame of a video, the aim is to 
predict the state of the target in subsequent 
frames1,2. Visual target tracking has wide 
and deep applications in human-computer 
interaction, intelligent video surveillance, 
medical diagnosis, visual navigation, and 
other fields. 

Although visual target tracking 
technology has been studied for many 

years and some progresses have been 
made, it is still difficult to meet the practical 
needs, such as scale change, fast motion, 
deformation, blur, illumination change, 
occlusion, and background clutter in some 
situations. Many academics attempt to 
improve target tracking and overcome its 
problems3,4, mainly including the 
challenging factors like the self-factor and 
background factors as shown in Figure 1. 
Often, multiple challenges are faced in a 
tracking task, which makes it particularly 
important to design a robust tracking 
algorithm that can cope with a variety of 
complex situations. 
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Figure 1. Challenging factors in target tracking. 
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Wang et al.1 summarized the general 
framework of the target tracking system 
into five main parts, which are motion 
model, feature extraction, observation 
model, model update, and integration 
processing as shown in Figure 2. The 
motion model generates the target 
candidate region for the current frame; the 
feature extraction performs feature 
extraction on the candidate region, which is 
used to describe the properties of the 
target; the observation model determines 
whether the candidate region contains the 
target and uses it as the predicted target 
location; the model update is used to 
control the strategy of observation model 
update; and processing operation fuses the 
outputs of multiple sub-tracking algorithms 
to obtain the final output (multi-target 
tracking algorithm). 

The literature5-8 surveyed visual target 
tracking algorithms from different 
perspectives, but due to the rapid 
development of visual target tracking 

algorithms, especially based on the 
technical breakthroughs in deep learning 
tracking algorithms, there still needs to be 
more focused and comprehensive visual 
single-target tracking algorithms. Thus, this 
paper aims to provide a review of the 
research progress of visual single-target 
tracking methods based on basic deep 
learning theory, hoping to provide an 
organized and hierarchical reference of 
diverse single-target tracking algorithms 
and valuable ideas for future research 
work. 

The work in this paper is organised as 
follows: Section 2 introduces traditional 
target tracking algorithms; Section 3 
analyses the mainstream correlation filter-
based video target tracking algorithms; 
Section 4 explores deep learning-based 
video target tracking algorithms; Section 5 
covers the experiments; and Section 6 
includes data analysis, results and future 
directions. 

 

 

Figure 2. Target tracking process1. 

2 Research on Classical target 
Tracking Algorithm 

Visual target tracking methods may be 
broadly categorized as either generative 
model-based or discriminative model-
based target tracking algorithms. 

Generative model-based target tracking 
techniques are more common. Generative 
model-based target tracking algorithms, 
which utilise the results of historical frames 
to generate statistical models used to 
describe target characteristics, can 
effectively deal with target loss during 
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tracking. But generative model-based 
methods usually ignore the background 
information around the target, while easily 
losing the target in the face of background 
confusion. Before 2010, target tracking 
algorithms generally used generative 
model approaches, and the classical 
tracking algorithms were Meanshift, 
Particle Filter, Kalman Filter, and feature 
point-based optical flow algorithms, to 
name a few. 

Unlike the generative model, the 
discriminative model mainly learns a 
decision boundary, which is used to 
distinguish the target region from the 
background region. After 2010, target 
tracking algorithms are mainly based on 
discriminative methods, and such 
discriminative classifiers are applied to 
target tracking algorithms; for example, 
support vector machines (SVMs), boosting 
algorithms, and decision trees, have 
achieved better results. 

3 Research on Target Tracking 
Algorithm Based on Correlation 
Filtering 

Since 2010, correlation filter (CF)-
based tracking algorithms have gained 
popularity in academia and industry for 
their excellent performance and faster 
running speed, which have developed 
rapidly. Bolme et al.9 proposed the 
minimum output sum of squared error 
(MOSSE) tracking algorithm, which was 
the first to introduce a correlation filter 
model in the field of target tracking to find 
the best position in subsequent frames by 
minimizing the mean-squared error In 
2012, Henriques et al.10 proposed the 
cyclic structure detection tracking algorithm 
with kernel (CSK), which uses a cyclic shift 
to densely sample the data and quickly 
train a classifier by fast Fourier transform 
(FFT). A number of related filtering 
algorithms have followed and built on them 
with a series of improvements in terms of 
feature representation, scale improvement, 
and resolution of boundary effects. Table 1 
shows the technical comparison of various 
mainstream CF tracking algorithms. 

 

3.1 Feature Improvement  

Henriques et al.10 extended the multi-
channel function and kernel method based 
on CSK and proposed the Kernel 
Correlation Filter (KCF) tracking algorithm, 
while transforming the solution of 
correlation filter into a ridge regression 
problem. Danelljan et al.11 mapped the 
original RGB 3-channel image to 11 
channels in the Colour Name (CN) tracking 
algorithm and processed each channel 
individually before fusing the results. To 
solve the problem of too many channels 
affecting the running speed, principal 
component analysis (PCA) is used to 
reduce the dimensionality of two major 
channels from the 11 channels for the 
above processing. The efficient convolution 
operators for tracker with hand-crafted 
feature (ECO-HC)12 using histogram of 
orientation gradient (HOG) and colour 
name (CN)10 features were fused and good 
results were achieved. 

Bertinetto et al.13 proposed the sum of 
template and pixel-wise learners (STAPLE) 
tracking algorithm where HOG features 
and colour histogram are used to model the 
appearance of the target, that consist of 
some complementary features. By solving 
their response maps independently, a 
better tracking effect is obtained through a 
weighted fusion of the response maps. 

Deep learning has achieved 
unprecedented results in the field of 
computer vision. In recent years, deep 
learning has also been introduced into the 
field of target tracking, where depth 
features are used to improve tracking 
performance under the tracking framework 
of correlation filtering. 

3.2 Scale Improvement  

Danelljan et al.14 proposed the 
discriminative scale space tracker (DSST) 
algorithm, which views target tracking as 
two separate problems of target centre 
translation and scale change. The HOG 
feature is used to train the translation filter 
and the scale filter. The translation filter is 
used to obtain the target centre position, 
while the scale filter is used to calculate the 
confidence map. The scale corresponding 
to the response map that finds the 
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maximum value of the response is the best 
scale. In order to better cope with the scale 
variation, 33 scale filters were used, and 
this scaling method is also followed in the 
subsequent paper of Denlljan et al14. 

To better cope with scale changes, Li 
et al.15 proposed the scale adaptive with 
multiple features tracker (SAMF) algorithm, 
which uses HOG features and CN features 
to extract features and seven scales for the 
target in the candidate region. This further 
detects both target translation changes and 
scale changes to determine the location 
and scale of the target quickly.  

3.3 Handling Boundary Effects  

Danelljan et al.16 proposed the spatially 
regularized discriminative correlation filter 
(SRDCF) tracking algorithm to suppress 
the boundary effect by learning the 
correlation filter with larger spatial support 
in the detection phase. It maintains an 
extensive search range to better cope with 
the fast motion of the target. 

The MOSSE-based correlation filters 
with limited boundaries (CFLM) tracking 
algorithm16 and the background-aware 
correlation filters (BACF) tracking algorithm 
based on HOG features were proposed by 
Galoogahi et al.17 Filters (BACF) tracking 
algorithm17,18, is more effective in mitigating 
boundary effects by using larger size 
detection image blocks and smaller size 
filters to increase the proportion of real 
samples. 

Unveiling the Power of Deep Tracking 
(UPDT) algorithm follows the Gaussian 
distribution used in ECO to extract positive 
samples, and also separates deep and 
shallow features. Experiments found that 
different features should be used with 
different variances. The influence of deep 
and shallow features in target tracking was 
systematically analysed and it was found 
that the deep model should be responsible 
for the robustness of the network while the 
shallow model was responsible for 
accurate localization. A novel feature 
fusion strategy is then proposed. 

Danelljan et al.19 proposed the ATOM 
tracking method, by designing a novel 
architecture consisting of specialized target 
estimation and classification components. 
An online trained classifier and an offline 
trained evaluation network were proposed 
to jointly solve the target tracking problem, 
which is very similar to detection, a two-
stage tracking framework. 

The tracking method of Probabilistic 
Regression for Visual Tracking (PrDiMP)20 
introduces meta-learning to incorporate the 
information of the first frame into the later 
frames, i.e., the information of the first 
frame is used to provide weights for the 
online update model of the later frames, 
where the online update model refers to the 
two Head parts of position prediction and 
bounding box prediction. Categorized as a 
regression problem, a conditional 
probability model is used here to predict the 
position of the next frame from the 
information of the previous frame. 

 

Table 1. Comparison of the mainstream CF tracking algorithms. 

F-Trackers Features 
Scale 

estimate 
Offline 
training 

Online 
learning 

MOSSE9 Raw pixels  ×  

SAMF15 Raw pixels\HOG\CN  ×  

KCF10 Raw pixels\HOG × ×  

HCF25 HOG × ×  

DeepSRDCF22 HOG\CN × ×  

DSST14 HOG  ×  

STAPLE13 HOG\Colour histogram  ×  

ECO12 CNN\HOG\CN  ×  

UPDT46 CNN\HOG\CN × ×  

ATOM19 CNN ×   

PrDiMP20 CNN  ×  
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4 Research on Target Tracking 
Algorithm Based on Deep Learning 
(DL) 

Deep learning-based target tracking 
algorithms can be divided into depth 
feature-based target tracking algorithms, 
Siamese network-based target tracking 
algorithms, recurrent neural network 
(RNN)-based target tracking algorithms, 
generative adversarial network (GAN)-
based target tracking algorithms and other 
specific network-based target tracking 
algorithms. Table 2 shows the technical 
comparison of various mainstream DL 
tracking algorithms 

4.1 Depth Feature-Based Target Tracking 
Algorithms  

In depth feature-based target tracking 
algorithms, scholars have replaced the 
traditional features with depth features 
under the existing target tracking 
framework21. In 2015, Danelljan et al.22 
proposed the SRDCF framework using 
DeepSRDCF, an improved algorithm for 
feature extraction by VGGNet23, which 
achieved better results, and also explored 
the effect of features of different layers of 
convolutional neural networks on target 
tracking accuracy. In 2016, Danelljan et al. 
also proposed the C-COT tracking 
algorithm, which uses VGGNet23,24 to 
extract multi-resolution features in the 
continuous domain, interpolates multi-
resolution features, and trains continuous 
correlation filters, which was used in the 
VOT2016 challenge, and resulted in an 
amazing performance. In 2017, Danelljan 
et al.12 also proposed the ECO algorithm 
based on C-COT combining convolution 
features, HOG features and CN features by 
factorizing the ECO, which combines 
convolutional features, HOG features and 
CN features, reduces the dimensionality of 
features by factorization of convolution 
operations, and reduces the training 
samples in the learning model to improve 
the tracking speed and robustness.  

Ma et al.25 proposed the tracking 
algorithm of Hierarchical Convolutional 
Features for Visual Tracking (HCF) which 
uses three correlation filters. Since the 
upper layer provides semantic information 

and the bottom layer provides texture 
information, the correlation filters are used 
in the order from deep to shallow to 
determine the target location from coarse 
to fine. 

4.2 Siamese Network-Based Target 
Tracking Algorithm 

Scholars have suggested the use of 
Siamese network-based target tracking 
algorithms to overcome the poor speed 
caused by pre-trained networks as feature 
extractors. With quicker speed and greater 
tracking performance, Siamese networks 
have received much interest in target 
tracking. 

Held et al.26 suggested GOTURN in 
2016. GOTURN introduced Siamese 
networks to target tracking and employed 
an offline feedforward network where a 
block of pictures from the current and 
previous frames is fed into a convolutional 
neural network for feature extraction and 
subsequently cascaded into a fully 
connected layer. The layer compares 
target and frame information to determine 
the target's location offset. Fully linked 
layer learns a complicated feature 
comparison function and outputs target 
motion. 

Tao et al.27 proposed Siamese 
Instance Search for Tracking (SINT) 
algorithm based on Siamese networks. 
SINT trains a matching function offline 
through a large amount of video data, 
which matches a given target in the initial 
frame with the next SINT trains a matching 
function offline by using a large amount of 
video data to match a given target in the 
initial frame with a candidate target in the 
next frame, and then returns the most 
similar target. 

Bertinetto et al.28 introduced Fully-
Convolutional Siamese Networks for 
Object Tracking (SiamFC), which 
implements a fully convolutional Siamese 
network architecture and uses AlexNet as 
the backbone network to extract template 
and search picture features. The feature 
map of the template image is convolved 
with the feature map of the search image to 
create the response map. Figure 3 shows 
SiamFC's tracking architecture.
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Figure 1. Tracking framework of SiamFC.  

 

Valmadre et al.29 improved on SiamFC 
to obtain the end-to-end representation 
learning for Correlation Filter based tracking 
(CFNet) algorithm. CFNet integrates 
correlation filtering into a network layer and 
adds to the template branch to update the 
template model, thus making the Siamese 
network more robust to appearance 
changes. 

Li et al.30 introduced Region Proposal 
Network (RPN)31 to Siamese network 
target tracking and proposed SiamRPN 
tracking algorithm. SiamRPN is first trained 
end-to-end using large-scale images 
offline. In the tracking phase, the tracking 
task can be viewed as a single-sample 
detection task that directly regresses the 
target to be tracked without the need for 
scale estimation, greatly increasing the 
runtime speed. 

SiamRPN++32 presents a Depth-wise 
convolution design that saves arithmetic 
power without sacrificing accuracy. 
SiamRPN adds bounding box regression 
and short-term monitoring is restricted.  

The Recurrently Optimizing Tracking 
Model (ROAM)33 technique provides a 
tracking model with a resizable response 
generator and a bounding box modulator. 
Only one anchor size is utilized for each 
spatial location, and its convolution filter 
may adapt to shape changes through 
bilinear interpolation. A meta-learning-
trained recurrent neural optimizer speeds 

up convergence of the updated tracking 
model.  

The Siamese Fully Convolutional 
Classification and Regression for Visual 
Tracking (SiamCAR)34 technique converts 
the network's regression output into a 
feature map using an anchor-free 
approach. Classification and centrality 
score maps are used to determine the 
optimum target centroid. The distance 
between the best target centroid and the 
four edges of the chosen box determines 
the tracking prediction box.  

Siamese Box Adaptive Network for 
Visual Tracking (SIamBAN)35 is built on 
Siamese network architecture and uses an 
anchor-free method, which gives the frame 
greater flexibility. Anchor-free removes 
predetermined anchors, which reduces 
model parameters and speeds it up. Null 
convolution improves perceptual field and 
tracking performance. 

4.3 Recurrent Neural Network-Based 
Target Tracking Algorithm  

Visual tracking is strongly tied to the 
spatial and temporal information of video 
frames, hence recurrent neural networks 
are progressively included in target tracking.  

Structure-Aware Network for Visual 
Tracking (SANet)36 is based on recurrent 
neural networks. The SANet employs 
RNNs to encode the structure of targets 
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throughout the learning process, which 
enhances target identification and 
interference source recognition. To supply 
richer information to the network, a layer-
hopping connection method fuses CNNs 
and RNNs, and the algorithm's superior 
tracking effect is tested.  

Yang et al.37 proposed Learning 
Dynamic Memory Networks for Object 
Tracking (MemTrack). MemTrack is a 
dynamic memory network for visual tracking. 
The external storage unit is managed by a 
long-short term memory (LSTM) network 
with an attention mechanism to adjust to 
target appearance changes. Gated 
residual template learning generates the 
final matching template and prevents 
excessive model updating. 

The SiamR-CNN38 algorithm uses a 
hard case mining strategy to discriminate 
the interferers and designs a dynamic 
trajectory planning algorithm (TDPF) by 
which all object candidate frames in the 
previous frame are redetected and grouped 
into small trajectories over time, thus 
tracking all potential objects, including 
interferers, simultaneously. Then the best 
target is selected within the current time 

step using dynamic planning based on the 
complete history of all target and interfering 
object trajectories. Therefore, the algorithm 
is computationally intensive and cannot be 
tracked in real-time. 

4.4 Generative Adversarial Network-
Based Target Tracking Algorithms  

Generative Adversarial Networks 
(GANs) have been extensively employed in 
various study domains to capture statistical 
distributions and generate training samples 
with little or labelled input.  

Song et al.39 applied GAN to target 
tracking and created an adversarial 
learning-based approach (VITAL). VITAL 
employs a generative network to randomly 
build masks and adaptively delete certain 
input attributes to boost positive samples. 
VITAL's network uses adversarial learning 
to identify masks that keep target object 
properties over time. VITAL presents a 
higher-order cost-sensitive loss to lessen 
the influence of clearly discernible negative 
samples while enabling network training. 

 

 

Table 1. Comparison of the mainstream deep learning (DL) tracking algorithms. 

Classification Methods Year Filter 
Offline 
training 

Online 
learning 

Features 

Depth 
features 

DeepSRDCF22 2016 CF ×  VGGNet 

C-COT24 2016 CF ×  VGGNet 

ECO12 2017 CF ×  HoG+CN+DL 

HCF25 2015 CF ×  VGGNet 

SN 

GOTURN26 2016 DL  × VGGNet 

SINT27 2016 DL  × AlexNet VGG16t 

SiamFC28 2015 DL  × AlexNet 

CFNet29 2017 DL+CF  × AlexNet 

SiamRPN31 2018 DL  × AlexNet 

SiamRPN++32 2019 DL  × 
AlexNet 

Resnet-50 

ROAM33 2020 DL  × DAF 

SiamCAR34 2020 DL  × Resnet-50 

Siamban35 2020 DL  × Resnet-50 

RNN 

SANet36 2017 DL  × R-CNN 

MemTrack37 2018 DL  × R-CNN 

SiamR-CNN31 2019 DL  × Fast R-CNN 

GAN VITAL39 2018 DL  × GAN 

Other 
MDNet40 2016 DL  × DAF 

TransT41 2021 DL  × DAF 
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4.5 Target Tracking Algorithms Based on 
Other Specific Networks  

Some researchers have created target 
tracking networks. Nam et al.40 suggested 
Multi-Domain Convolutional Neural 
Network (MDNet) tracking technique. 
MDNet needs pre-training with several 
tracking movies to achieve a generic target 
representation. Each domain corresponds 
to a training sequence, and the shared layer 
learns the generic target representation 
during training. When a new sequence has 
to be updated, only the domain-specific 
layers of MDNet are updated online, 
allowing the network to adapt to the current 
tracking environment.  

Chen et al.41 introduced a novel 
Transformer tracking system, including 
feature extraction, class fusion, and head 
prediction modules. Transformer class fusion 
mixes template and searches region 
characteristics without correlation. Feature 
fusion networks based on self-context 
enhancement and cross-feature 
enhancement are created, focusing on 
important information, including edges and 
comparable targets, as well as building 
correlations between distant data that 
improves classification and regression 
outcomes. 

5 Experimental 

This section gives experimental data 
on the performance of the two types of 
target tracking algorithms discussed in 
Sections 3 and 4 on the OTB100, and 
VOT2018 benchmark datasets. Table 3 
gives the details of some common single-
target tracking benchmark datasets. 

5.1 Evaluation Methods for Single Target 
Tracking  

To promote the development of the 
target tracking field, scholars have 
summarized and generalized the evaluation 
criteria of target tracking algorithms, i.e., the 
performance of different tracking 
algorithms is evaluated by qualitative and 
quantitative evaluations. For qualitative 
analysis, three evaluation criteria are 
commonly used: traditional evaluation 
methods, Visual Object Tracking (VOT) 

evaluation methods42,43 and Online Object 
Tracking Benchmark (OTB) evaluation 
methods3,4. 

5.1.1 Traditional Evaluation Methods 

The traditional evaluation methods 
include two metrics, central location error 
(CLE) and overlap ratio (OR)44. The smaller 
the CLE value, the higher the accuracy of 
the algorithm. The larger the OR value, the 
better the tracking performance of the 
algorithm. Generally, using the average 
overlap rate in the tracking algorithm can 
reflect the tracking accuracy more 
accurately. 

5.1.2 OTB Evaluation Methods  

On the basis of a description of prior 
work, Wu et al.3,4 presented the target 
tracking benchmark OTB for assessing the 
performance of single-target tracking 
algorithms. The OTB assessment database 
originally had 50 video sequences, and the 
OTB not only offers evaluation metrics for 
testing target tracking systems, but also 
includes some well-labelled, challenging 
video sequences. The OTB benchmark 
also offers an assessment toolkit with 
MATLAB and Python versions, and the 
function interface is straightforward and 
easy to use. Therefore, it is frequently 
used. The OTB analyses the performance 
of the tracking algorithm using the precision 
rate (PR) based on the centre position error 
and the accuracy rate based on the target 
tracking method, and the success rate (SR) 
is determined by the overlap rate. 

The success rate chart of the 
algorithm can be developed based on the 
success rate of the target tracking 
algorithm under different thresholds The 
area under the curve (AUC) of the success 
rate chart is used to rank different tracking 
algorithms and compare the advantages 
and disadvantages of the algorithms, 
based on the accuracy rate. metric based 
on the centre position error and the 
success rate metric based on the overlap 
rate. OTB proposes three metrics: one pass 
evaluation (OPE), temporal robustness 
evaluation (TRE), and spatial robustness 
evaluation (SRE). These three values 
represent the PR and SR of different tests. 
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The larger the value, the better the tracking 
accuracy and tracking performance. 

The performance of the target tracking 
algorithm can be easily evaluated by the 
OTB evaluation method, using metrics 
such as accuracy and success rate to 
assist in analysing the performance of the 
algorithm, as well as to evaluate and 
compare different algorithms. 

5.1.3 VOT Evaluation Methods 

Since 2013, VOT has been an annual 
target tracking competition43,44,46 that 
typically acts as a workshop for IEEE 
International Conference on Computer 
Vision (ICCV) and European Conference 
on Computer Vision (ECCV) conferences. 
The number of test video sequences on 
VOT has climbed from 16 in 2013 to 60 
currently, while the complexity of the video 
sequences has constantly increased. Since 

VOT provides resources such as evaluation 
criteria required to assess the performance 
of tracking algorithms, a large number of 
manually labelled test videos, open source 
evaluation toolkits, and test results of many 
tracking algorithms on VOT, the VOT 
evaluation method has been widely 
adopted in the field of target tracking. 

Starting from VOT2016, three key 
metrics to evaluate the performance of 
target tracking algorithms are used in VOT: 
accuracy (A), robustness (R), and 
expected average overlap (EAO). The 
larger the accuracy value, the higher the 
tracking accuracy. The smaller the 
robustness value, the better the tracking 
performance. The larger the EAO value, 
the higher the target tracking accuracy. 

In addition to the above experimental 
datasets, a number of others have 
emerged in recent years, such as UAV123, 
LaSOT45, as shown in Table 3.

 
Table 2. Video Count (VC), Minimum Frame Rate (Min-FR), Maximum Frame Fate (Max_FR), and 
Total Frames (TF) of evaluation datasets for major single-target tracking. 

DATASET VC 
Min-
FR 

Max-FR TF LINK 

OTB50 50 71 3,872 29,491 http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html 

OTB100 100 71 3,872 59,040 http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html 

VOT2018 60 41 1,500 21,356 http://www.votchallenge.net/vot2018/ 

UAV123 123 109 3,085 113,000 https://cemse.kaust.edu.sa/ivul/uav123 

LaSOT 1,400 1,000 11,397 3,520,000 https://cis.temple.edu/lasot/download.html 

5.2 Experimental Data of Target Tracking 
Algorithm 

To get an accurate understanding of 
the performance of the classical single-
target tracking algorithm, we tested on a 
high-performance computer with an Inteli7-
12700H CPU and paired with a GeForce 
RTX3070 and 32G RAM, with data sets 
based on OTB100 and VOT2018, ranging 
from the classical single-target tracking 
algorithm. In OTB100, two metrics, PR and 
AUC, were used to measure the 
performance of the algorithms, PR is the 
accuracy rate based on the center position 
error, and AUC is the area under the curve 
through the success rate plot to rank and 
compare the different tracking algorithms 
for the algorithms' merits. Both values were 
taken as the average of 11 attributes in the 

OTB100, and higher values represent 
better corresponding performance of the 
algorithms. In VOT2018, three metrics, A, 
R, and EAQ, were used to compare the 
performance of the algorithms. A stand for 
accuracy, the tracking frame predicted by 
the target tracking algorithm in the test 
video, and the overlap between the 
predicted target bounding box and the 
manually marked target bounding box was 
calculated. In contrast, the performance of 
the algorithm was measured by the degree 
of overlap of the bounding box. The higher 
the overlap rate, the better the accuracy of 
the target tracking algorithm. R stands for 
robustness, where the target tracking 
algorithm may not succeed in a single run 
after the test video. It may need several re-
initializations to succeed, which depends 
on the number of times the algorithm is 
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reinitialized to characterize the robustness 
of the target tracking algorithm. The lower 
the number of re-initializations, the better 
the robustness of the algorithm. The larger 
the EAO value, the higher the accuracy of 
the target tracking algorithm. All algorithm 
codes are available at the official download 
source published by the algorithm founders, 
and the speeds of the algorithms are 
obtained from the officially published data. 

6 Results and Discussion 

6.1 Experimental Data Analysis 

From Table 4, Figure 4 and Figure 5, it 
can be concluded that the discriminative 
tracking approach converts the tracking 
problem into a detection problem when 
analysed from the perspective of features, 
so good features are the key factor for such 
tracking. From the success rate and 
accuracy results given in Table 5, it can be 
seen that HOG and CN features reflect 
excellent performance in the field of visual 
tracking, and many methods proposed 
afterwards combine depth features in 
different ways to construct tracking 
frameworks that reflect good performance. 
The biggest advantage of the correlation 
filtering-based tracking algorithm is 
reflected in the speed. 

As can be derived from Table 5, 
Figure 6 and Figure 7, the results show that 
the MDNet algorithm based on video data 
trained offline and with online model 
updates, alongside the improved MDNet-
based algorithm VITAL achieved good 
results in terms of tracking accuracy, but 
was not satisfactory in terms of speed and 
did not meet the real-time criteria. The 
algorithms SiamFC, Dsiam and SINT 
based on the Siamese network framework 
also achieved relatively good rankings. C-
COT uses VGG-Net to extract depth 
features, using the original colour image 
and the output of two convolutional layers 
as features, which have significantly 
improved accuracy compared with similar 
algorithms. Still, the various features 
seriously reduce the computational 
efficiency and make it challenging to meet 
the real-time requirements. ECO reduces 
the feature dimensions of HOG, CN and 
CNN by factorization operation on the basis 
of C-COT, where HOG is compressed to 
10, CN is compressed to 3. The 1st and 5th 
convolutional layers of CNN are compressed 
to 16 and 64, respectively, reducing the 
training parameters and thus, effectively 
reducing the computational complexity. 
The tracking performance is very high in 
the experimental data for each dataset. 

 
 
Table 3. Experiment mainstream CF tracking algorithms in OTB100, VOT2018. 

CF-Trackers 
OTB100 Speed (fps)  VOT2018 

PR AUC CPU GPU EAO A R 

MOSSE19 0.421 0.308 669.0 - 0.128 0.499 0.962 
SAMF14 0.723 0.547 7.0 - 0.091 0.464 1.292 

KCF9 0.696 0.465 172.0 - 0.129 0.451 0.768 
HCF20 0.837 0.562 - 10.4 - - - 

DeepSRDCF21 0.849 0.651 - 0.2 0.151 0.485 0.703 
DSST13 0.725 0.552 54.3 - - - - 

STAPLE12 0.782 0.581 80.0 - 0.169 0.469 0.599 
ECO11 0.929 0.706 60.0 8.0 0.301 0.467 0.267 
UPDT22 0.928 0.701 - - 0.367 0.527 0.175 
ATOM23 0.881 0.657 - 30.0 0.399 0.587 0.201 

PrDiMP18 0.911 0.701 - 30.0 0.438 0.612 0.157 
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Figure 2. Comparison of performance of mainstream CF trackers in OTB100. 
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Figure 4. Comparison of performance of mainstream DL trackers in OTB100. 
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Table 4. Experiment mainstream DL tracking algorithms in OTB100, VOT2018. 

Classification Methods 
VOT2018 OTB100 

EAO A R PR AUC FPS 

Depth 
Features 

DeepSRDCF21 0.276 0.528 0.326 0.849 0.651 0.3 
C-COT26 0.331 0.539 0.238 0.891 0.659 0.3 
ECO11 0.374 0.553 0.200 0.929 0.706 6.0 
HCF20 0.395 0.561 0.199 0.837 0.562 0.8 

SN 

GOTURN27 0.240 0.390 0.100 - 0.390 100.0 
SINT28 0.201 0.506 0.231 0.778 0.571 68.0 

SiamFC29 0.236 0.534 0.541 0.815 0.612 58.0 
CFNet30 0.186 0.501 0.585 0.749 0.591 75.0 

SiamRPN32 0.344 0.560 0.260 0.849 0.637 126.0 
SiamRPN++33 0.414 0.600 0.234 0.912 0.715 35.0 

ROAM34 0.380 0.543 0.195 0.902 0.680 20.0 
SiamCAR35 - - - 0.907 0.689 52.0 
Siamban36 0.452 0.597 0.178 0.917 0.696 40.0 

RNN 
SANet37 0.389 0.610 0.690 0.926 0.677 1.0 

MemTrack38 0.273 0.530 0.440 - 0.628 50.0 
SiamR-CNN32 0.408 0.609 0.220 0.890 0.701 4.7 

GAN VITAL40 0.323 0.630 0.170 0.911 0.710 1.5 

Other 
MDNet41 0.211 0.600 0.160 0.905 0.670 1.0 
TransT42 - - - - 0.711 50.0 

  

 

 

Figure 5. Comparison of performance of mainstream DL trackers in VOT2018. 

 

6.2 Results 

The results show that ECO is the best 
performing CF algorithm in terms of tracking 
accuracy, tracking speed, and other 
aspects of performance. 

Among the DL algorithms, the 
Siamese network structure of the algorithm 
alone is not particularly outstanding in all 
aspects, but it is the best in terms of 
stability. In particular, combined with the 
use of the lightweight network model 

SANet35, the comprehensive performance 
in various aspects such as tracking 
accuracy and tracking speed is the best. 

6.3 The Future Direction of Development 

The future works could be in two main 
directions. First, how to balance the 
relationship between tracking performance 
and real-time. Mainly in the balance 
between tracking accuracy and tracking 
speed. If the accuracy of the algorithm is 
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good, but cannot be used for real-time, it 
cannot be converted into products. 

Second, visual saliency, attention 
mechanism and the integration of various 
modules of target tracking, weakening the 
background to highlight the foreground, 
guiding the tracker to focus on useful 
information, and realizing the combination 
of correlation filtering and twin networks will 
all be the space for researchers to explore. 

7 Conclusion 

This paper focuses closely on the 
visual target tracking framework. Firstly, 
the traditional visual target tracking 
algorithm was analysed. Then, the 
mainstream video target tracking 
algorithms based on correlation filtering 
were analysed from three aspects: feature 
improvement, scale improvement, and 
dealing with boundary effects. Then, the 
video target tracking algorithms based on 
deep learning were discussed in detail, and 
the target tracking algorithms based on 
deep learning were divided into five major 
categories, and each type of algorithm was 
analysed in terms of research motivation, 
algorithmic ideas, research framework, 
advantages and disadvantages. Finally, 
the tracking algorithms analysed above 
have experimented on OTB100 and 
VOT2018 benchmark datasets, and the 
experimental data obtained were 
compared to draw the authors' conclusions 
on visual single-target tracking algorithms 
and point out the future development trend 
in the field of video target tracking. 
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