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Abstract 

 

Valproate (VPA) has been used clinically for more than 40 years and remains one of the most 

commonly prescribed antiepileptic drugs. With the advances of various scientific disciplines, 

much new information about this drug has been uncovered. The aim of this review is to 

summarize new knowledge about the pharmacokinetics, pharmacodynamics, and 

pharmacogenomics (3Ps) of VPA for future applications and studies. The review was identified 

nonsystematically using Pubmed, Google Scholar, and open-access search engines, and studies 

on the pharmacokinetics, pharmacodynamics, and pharmacogenomics of VPA between 2012 

and 2022 were included. Recent findings on pharmacokinetic information, including factors 

associated with serum VPA levels and its interaction with new drugs. On the other hand, VPA 

was found to have a neuroprotective effect that is beneficial in brain disorders as well as in 

patients with c stroke. With respect to the lungs, it has been found to reduce the risk of acute 

respiratory failure. Recent risk data linked VPA use to hepatotoxicity, vitamin D deficiency, 

prolonged QT interval, and insulin resistance, among others. Various gene polymorphisms 

such as CYP2C9 and UGT1A6 are some polymorphisms that may cause dose alteration in the 

population. The compilation of the 3Ps of VPA revealed new drug information indicating the 

need for further evaluation. These include new uses and benefits, toxicity data including acute 

and chronic use, and the involvement of genetic polymorphisms in the pharmacokinetics and 

pharmacodynamics of the drug. 
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1.0 Introduction 

 

Sodium valproate (sodium 2-

propylpentanoic acid, VPA) was first 

approved for the treatment of epilepsy in 

France in 1967 (1), although a controlled 

trial was not published until 1975 (2). This 

drug was used as a first-line therapy for 

generalised tonic-clonic seizures and later 

found to be useful for non-epileptic seizures 

as well as manic episodes of bipolar 

disorder and prophylaxis of migraine (3). 

Its use found to be associated with an 

increased risk of fatigue, digestive 

problems, weight gain, tremors, baldness, 

thrombocytopenia and changes in liver 

enzymes. (4).  

Though VPA is a well studied 

compound,  recent studies unearthed much 

more information about VPA. At the 

cellular level, VPA was found to act on 

histone deacetylases (HDACs), ion 

channels, phospholipase A2 signalling and 

inositol synthesis, among others (5). These 

complex mechanisms may be responsible 

for some of the effects of VPA that may 

have been previously overlooked.  

Aside new uses of VPA were reported 

among others include as the treatment of 

alcohol dependency (6), as an abortive 

agent in prolonged migraine attacks (7) and 

many others.  

In recent years, the interest in the 

influence of genetic factors and valproate 

such as the effect of T1405 polymorphism 

in the carbamoyl phosphate synthetase 1 

(CPS1) gene on valproate-induced 

hyperammonemia (8), the association of 

chronic liver condition and elevated serum 

concentration of γ-glutamyltransferase (γ-

GT) (9) and many others.   

With new knowledge of VPA being 

uncovered, it is important to compile these 

findings for future applications and studies. 

The studies were unsystematically 

indentified using various libraries including 

Pubmed, Google Scholar and any open 

access search engines. VPA studies in the 

between 2012 to 2022 were included in the 

review.  

2.0 Pharmacokinetics of VPA 

 

2.1 Absorption 

 

VPA is well absorbed with a bioavailability 

of more than 80%. The peak plasma level 

of VPA was reached at 3 to 4 hours after 

oral administration and the steady state at 

24 to 48 hours (1). The plasma half-life of 

VPA is 10 to 16 hours and is administered 

3 to 4 times per day (10). The unbound 

component is pharmacologically active and 

able to cross the blood-brain barrier (1). 

The presence of food delays the absorption 

of VPA. Some drugs, namely carbapenem 

antibiotics and dolutegravir, decrease 

serum VPA concentrations by decreasing 

intestinal absorption (11, 12, 13).  

The time to reach the maximum plasma 

concentration of VPA varies depending on 

the pharmaceutical preparation (enteric-

coated, controlled-release, capsule, liquid, 

intravenous and suppository). It is 

estimated that sustained-release 

formulations require 5 to 10 hours to reach 

peak concentration after ingestion, whereas 

syrups require only 2 to 3 hours after 

ingestion (14). 

 

2.2 Distribution 

  

VPA is highly protein-bound (87-95%) and 

is mainly bound to albumin, resulting in 

low clearance (6-20 ml/h/kg) and reduced 

serum concentration due to saturation of the 

protein binding site (10). At serum levels 

below 45-50 μg/ml, the binding sites are 

unsaturated. At higher serum levels, these 

binding sites become saturated, increasing 

the proportion of unbound VPA or leading 

to higher availability of the unbound drug 

(1) ranging from 10% at plasma 

concentrations up to 75 μg/ml to 30% at 

levels above 150 μg/ml. The average free 

fraction of VPA in adults on monotherapy 

ranges from 10% at 40 μg /mL to 18.5% at 

130 μg /mL (10).  

In the presence of lower serum albumin 

levels or pregnancy-related hypoalbuminemia 

(especially during the second and third 
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trimesters), malnutrition, nephrotic or 

uraemic disease or liver disease, or 

concomitant administration of antiepileptic 

drugs with other high protein drugs (10) 

VPA levels decrease with high fluctuations 

in apparent distribution volume (Vd)  

between 0.1 and 0.5 L/kg (15). 

 

2.3 Metabolism 

 

VPA is mainly metabolised in the liver and 

excreted in the urine, with only a small 

amount in unchanged form. In an adult, 

VPA metabolism involves the 

glucoronidation by uridine 5’-diphospho-

glucoronosyltranferases (UGTs), 

mitochondrial β-oxidation and metabolism 

mediated by cytochrome P450 (CYP450). 

However, in children, glucuronidase 

activity is much lower than in adults, with 

mitochondrial β -oxidation being the major 

pathway in VPA metabolism in children 

(15). A previous study documented 

glucuronidation of VPA by UGT1A3, 

UGT1A4, UGT1A6, UGT1A8, UGT1A9, 

UGT1A10, UGT2B7 and UGT2B15 in 

laboratory studies using human liver 

microsomes and purified recombinant 

proteins (5).  

VPA has also been found to strongly 

inhibit the isoenzymes UGT, CYP2C19 and 

epoxide hydrolase, leading to a change in 

serum concentration of concomitantly 

taken drugs such as amiodarone, 

fluconazole, phenylbutazone, 

sulphinpyrazone, sulphaphenazole and 

certain other sulphonamides (10). 

 

2.4 Excretion  

 

Approximately 20% of VPA is excreted as 

a direct conjugate by renal clearance (16). 

A study in 54 patients reported that high 

individual variation such as age, body 

weight, total daily dose and concomitant 

treatment with other antiepileptic drugs 

(carbamazepine and phenytoin) were 

associated with renal clearance of VPA 

(17).  

3.0 Pharmacodynamics of VPA 

 

3.1 Indications  

 

VPA is a United State Food and Drug 

Administration (USFDA) approved drug 

for the treatment of various seizure forms 

including complex partial seizures, against 

simple and complex absence seizures as 

monotherapy or adjunctive therapy and in 

patients with multiple seizure types 

including absence seizures. It is also 

approved for the treatment of manic and 

mixed episodes of bipolar disorder (manic-

depressive disorder) and for the prevention 

of migraine headaches (18).  

The off-label uses of VPA among 

others includes migraine prevention (19) 

and in management of agitation in dementia 

(20). Aside, VPA is also was used in the 

management of neuropathic pain and 

neuralgia, believed to be via enhanced 

gamma-aminobutyric acid (GABA) 

inhibition as described by Wiffen et al 

through their Cochrane review (21). 

Another commonly known off-label uses of 

VPA in psychiatric setting other than 

bipolar include in the treatment of mania in 

schizoaffective disorder (22) as well as 

bahavioral disturbances in children such as 

attention-deficit hyperactive disorder 

(ADHD) and autism spectrum (23).  

 

3.2 Mechanisms of action 

 

VPA is known to acts via various ways. As 

described by Bourin M (2020), there are 

several pathways identified to be affected 

following administration of VPA (24). It is 

well known that VPA will acts on the 

central nervous system by potentiating the 

activity of gamma-aminobutyric acid 

(GABA) (16). It also acts by inhibiting ion 

channel that leads to repolarization of the 

membrane that subsequently stabilizing the 

membrane (25). VPA also was found to act 

as a glutamate antagonist, reducing the 

activity of glutamate/N-methyl-D-aspartate 

receptors in the central nervous system (1). 

It action on the signaling pathway of 
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inositol has been hypothesized to reduce the 

inositol de novo synthesis (26) that is 

associated to bipolar disorder.  

VPA was also found to be responsible 

ot activation of various signalling 

pathyways including extracellular signal-

regulated kinase pathway (ERK) (27) that is 

associated with neurogenesis, dendritic 

arborization, and neuronal plasticity, and 

activation of mitogen activated protein 

kinases (MAPK) (28) for the 

neuroprotective effect of VPA.    

Aside from activation pathways, VPA 

was also found to decrease or inhibit 

pathways. This include inhibition of 

arachidonic acid phospholipid A2 (PLA2) 

pathway that is known to be responsible to 

affect membrane excitability, gene 

transcription, sleep pattern, and memory 

among others (29). VPA also found to 

inhinbit glycogen synthase kinase (GSK3) 

that is responsible to cell cycle progression 

and the structure of neuron cell survival 

(30).  

 

3.3 VPA in the brain 

 

Ischaemic stroke is one of the most 

common subtypes of stroke and current 

treatment options are limited to 

thrombolytic therapy within an extremely 

narrow time frame (31).  

Histone deacetylase (HDAC) is an 

enzyme associated with brain disorders, 

including ischaemic stroke, autism, 

Alzheimer's disease and depressive 

disorders. VPA is known to be a non-

specific HDAC inhibitor and is independent 

of the inhibition of histone deacetylase 9 

(HDAC9), an enzyme involved in the 

pathogenesis of ischaemic stroke  (32).   

It was found that co-administration of 

VPA and resveratrol showed a synergistic 

neuroprotective effect in the treatment of 

post-ischaemic brain damage, which was 

dose-dependent (34).  In the in vitro oxygen 

glucose deprivation (OGD) study, VPA 

showed neuroprotective properties by 

inhibiting class I HDACs at a low dose in 

combination with resveratrol or at a higher 

dose when used alone (34). A study by the 

group found that VPA exerts similar 

neuroprotective effects via inhibition of 

HDAC3 expression and activity (35).  

  

Figure 1 Roles of histone deacetylase 

(HDAC) and histone acetyl transferase 

(HAT) in histone acetylation and 

deactylation. 

 

HDAC has been widely studied with 11 

subtypes identified and grouped into 4 

classess that responsible to various bodily 

functions (35). These results will benefit 

trauma patients who need immediate 

treatment for bleeding or brain injury. On 

the other hand, the action of VPA as an 

HDAC and glycogen synthase kinase-3β 

(GSK-3) inhibitor suggests that it is 

beneficial in patients with spinal cord 

injury, as it has neuroprotective and 

neurogenetic effects (36).  

Similar observations were made in 

animal studies on the role of VPA in the 

prevention of chronic constriction injury-

induced neuroinflammation and neuronal 

death (34). The study concluded that 

administration of VPA reduced the 

concentration of proinflammatory 

cytokines in the sciatic nerve, spinal cord 

and spinal ganglia of rats in the chronic 

constriction injury model, and VPA 

treatment reduced the expression of 

Nuclear Factor Kappa-Light-Chain-

Enhancer of Activated B Cells (pNFκB)/ 

Inducible Nitric Oxide (iNOS) / 

Cycloxygenase-2 (COX -2) and reduced the 

expression of pAkt / pGSK-3β in the 

salience network, dorsal root ganglion and 

spinal cord of rats after chronic constriction 

injury (37).  
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Although promising, further studies to 

better understand its role in humans would 

be urgently needed. 

 

3.4 VPA and respiratory system 

 

Based on their 10-year study of 16228 

patients with subarachnoid haemorrhage 

(SAH), Liao et al. reported that VPA users 

had a significantly lower incidence of 

pneumonia and 16% reduced risk of acute 

respiratory failure, independent of 

neurological and cardiovascular 

dysfunction (38). The group postulated that 

this observation was due to the role of VPA 

as an HDAC inhibitor, which has a potent 

anti-inflammatory effect. At SAH, it is 

associated with increased release of 

proinflammatory cytokines, formation of 

reactive oxygen species and production of 

neutrophil elastase, which progressively 

promote vascular permeability towards 

acute lung injury and also acute lung failure 

(38).  

The lung-protective effect of VPA was 

further supported by Bhagarva et al, as it 

was shown to inhibit the production of 

nuclear factor-κβ (NF-κB), tumour necrosis 

factor-α (TNF-α) and interleukin-6 (IL -6) 

and other chemokines that attract 

neutrophils that subsequently cause damage 

to the lung (39).  

As VPA has been shown to be 

beneficial in acute respiratory distress 

syndrome (ARDS), it is thought that the 

same effect could be achieved in COVID - 

19 patients, as these patients have excessive 

release of proinflammatory cytokines in the 

respiratory system (40). Studies later 

observed that VPA have positive roles in 

COVID-19 infection (41, 42, 43).  

 

3.5 VPA and liver 

 

The effect of VPA on the liver is well 

known. Data from the World Health 

Organisation (WHO) show that VPA was 

the third leading cause of drug-related 

deaths in the liver based on surveillance 

data between 1968 and 2003 (44). This was 

due to the excretion of VPA via the liver 

with a life-threatening side effect including 

hepatotoxicity occurring during the first 6 

months of treatment. The hepatotoxicity 

can varies from minimal or asymptomatic 

to life-threatening/death condition, not just 

minor increases in the liver enzyme (45).  

It has also been suggested that VPA may 

cause liver toxicity via the formation of 

reactive VPA metabolites, inhibition of 

fatty acid-β oxidation, increased oxidative 

stress and genetic polymorphisms of certain 

enzyme genes such as carbomyl phosphate 

synthetase 1 (CPS1), polymerase gamma 

(POLG), glutathione S-transferases (GSTs), 

superoxide dismutase 2 (SOD2), uridine 5’-

diphospho-glucoronosyltransferase (UGTs) and 

cytochromes P450 (CYPs) (46, 47). It has been 

highlighted that disturbance to VPA 

regulation might leads to the formation of 

toxic metabolites (48) that leads to 

neurological and mental disorders (49), 

fetal malformations (50), neuroendocrine 

dysfunction (51), and impaired 

hematopeiotic homeostasis (52), among 

others.  

Chen et al. (2015) found in their study 

that patients with carnitine deficiency are at 

higher risk of VPA-induced liver injury 

(53) and therefore recommended that 

carnitine supplementation may be 

beneficial in VPA-induced liver injury to 

protect the liver from toxins.  

In children, VPA-induced drug-induced 

liver injury (DILI) occurs more frequently 

than in adults, with an estimated 1 in 600 

incidence of hepatotoxicity in children aged 

two years and younger (54). The USFDA 

database indicates that VPA causes the 

most DILI problems in children (55).  

Therefore, paediatricians need to be aware 

of this potential liver toxicity in children 

and, should it occur, early action is urgently 

needed to ensure patient safety.  

 

3.6 VPA and the cardiovascular system  

 

Antiepileptic drugs are known to affect the 

cardiovascular system. It has been 

suggested that VPA use is associated with 
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sudden unexpected death in epilepsy, due to 

an increased risk of prolonged QT (56). 

Aghabiklooei (2015) showed in her study 

of 196 VPA intoxicated patients that 19.9% 

had prolonged QT intervals (56).  

Similar results were observed for 

prolonged QT intervals in seizure patients 

receiving VPA compared to healthy non-

epileptic patients (57). The study was 

conducted in 129 subjects and perhaps 

larger studies are needed to understand the 

effects of taking VPA on the heart.  

VPA ingestion is also associated with 

hypertension in 1-5% of patients through 

several mechanisms, including increasing 

gamma-aminobutyric acid (GABA) 

neurotransmitters, blocking sodium 

channels and inhibiting neuronal excitation 

mediated by glutamate/N-methyl-D-

aspartate (NMDA) receptors (58). Further 

background information such as non-drug 

risk factors including gender, age, 

metaboliser status, history of heart disease 

and drug history is required to establish an 

association with the occurrence of the 

heart-related abnormalities.   

The HDAC inhibitor properties of VPA 

may have a protective effect on the heart, so 

its use may be beneficial in the treatment of 

supraventricular arrhythmias, myocardial 

infarction, cardiac remodelling, 

hypertension and fibrosis, as reported by 

Tian et al (59). A study in myocardial 

ischemic rats in which VPA was injected 

intraperitoneally resulted in a decrease in 

the release of lactate dehydrogenase (a 

marker of myocardial damage), as well as 

decreased Bax and increased Bcl2 

expression (prevents cell apoptosis), which 

could have a positive effect on myocardial 

outcome at post infarction (59). The team 

found that forkhead box protein (Foxm1) 

expression was 4-fold higher in the 

presence of VPA than in the absence of 

VPA (59). The protein Foxm1 is 

responsible for cardiomyocyte proliferation 

(60).  

The findings suggested that VPA may 

be beneficial in the treatment of acute 

myocardial infarction which could be 

important. 

 

3.7 VPA and bone 

 

Long-term treatment with VPA is known to 

be associated with vitamin D deficiency, 

osteoporosis, bone loss and an increased 

risk of fractures (61). These adverse effects 

were listed by the USFDA following the 

post-marketing surveillance report. Arora et 

al. (2016) pointed out that VPA is 

associated with decreased bone mass 

density and increases the risk of fractures, 

thus requiring close monitoring, prevention 

and treatment of bone disease in patients 

receiving VPA (62).  

A meta-analysis by Xu et al. (2019) also 

concluded that prolonged treatment with 

VPA monotherapy of more than 2 years 

reduced vitamin D levels in children with 

epilepsy compared with healthy children 

(63). Therefore, vitamin D supplementation 

would help children with prolonged VPA 

treatment from bone malformations.  

Significantly low vitamin D levels (less 

than 20 ng/ml) were found in 28 paediatric 

patients with epilepsy receiving 

monotherapy with VPA, despite normal 

growth, no limitation of physical activity 

and adequate sun exposure (64). Similar 

observations in vitamin D deficiency 

following VPA use in pediatric patients 

were reported by others (63, 65).  

Pitetzis and co-workers noted in their 

review that VPA mediates changes in 

several bone activities in addition to 

reducing vitamin D levels. These include 

downregulation of osteoblast proliferation, 

changes in collagen synthesis and also 

indirect effects through endocrine systems 

such as hypogonadism, hypothyroidism, 

hypercortisolaemia and carnitine 

deficiency (66).  

The effect of VPA on bone still needs to 

be better understood. New evidence, such 

as the association with osteoporosis 

mediated by a decrease in vitamin D levels, 

still needs to be better understood. In 

addition, current evidence indicates that 
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paediatricians need to be cautious and 

aware when administering VPA as 

monotherapy in children. 

 

3.8 VPA side effects 

 

3.8.1 Weight gain, non-alcoholic fatty 

liver disease, and insulin resistance 

 

VPA -related weight gain and obesity have 

been frequently reported in association with 

other metabolic disorders such as insulin 

resistance, dyslipidaemia, metabolic 

syndrome (MetS) and non-alcoholic fatty 

liver disease (NAFLD) (67). In children, 

long-term studies with VPA have 

demonstrated weight gain and insulin 

resistance (68).  

Metabolic disturbances in patients 

treated with VPA were further confirmed 

by the observation of Chang et al. (2010) in 

their study. The two-arm study of 119 

healthy volunteers and 77 bipolar patients 

indicated that VPA was the cause of the 

metabolic disturbances observed in bipolar 

patients treated with VPA (57).  

So far, the weight gain induced by VPA 

is not age-dependent, as noted by Tian et al. 

(2019) (59). It has been suggested that VPA 

-induced weight gain is multifactorial and 

occurs through multiple pathways. Several 

neuropeptides and cytokines are mediated 

centrally and peripherally (Figure 3) and 

are thought to be involved in weight gain 

(56). 

An increase in lipid levels after 

treatment with VPA has also been reported 

in association with weight gain. In a study 

of 60 subjects randomly assigned to receive 

either VPA or carbamazepine, the VPA 

treatment group was found to have a high 

body mass index, high triglyceride levels 

and low high-density lipoprotein levels 

(69). Despite the increase in lipid profile, 

the group concluded that VPA was safe and 

the occurrence of insulin resistance was not 

significant. (69).  

In a separate study, Rehman et al (2017) 

pointed out that VPA-induced weight gain 

is associated with changes in insulin and 

leptin levels. It was found that VPA also 

significantly increased insulin levels and 

insulin resistance (HOMA-IR) by 

inhibiting several metabolic pathways such 

as glucose uptake, glycogenesis and 

glucose oxidation (70, 71). Later, it was 

concluded that VPA increases the risk of 

metabolic syndromes such as 

hyperinsulinaemia, insulin resistance and 

oxidative stress. 

Perhaps the occurrence of metabolic 

disorders in patients receiving prolonged 

treatment with VPA should be closely 

monitored by both the physician and the 

pharmacist. 

 

3.8.2 Alopecia and hair growth 

 

According to the USFDA, VPA-induced 

alopecia was found to be the most common 

cosmetic adverse reaction. The report 

concurred with a review by Wang et. al 

(2019), who reported that VPA-induced 

alopecia occurred in 6 to 12% of patients 

based on their observation of 42 patients 

(72).  

Anagen effluvium is the form of hair 

loss that occurs when hair is actively 

growing during the anagen phase of the hair 

cycle. This prevents the natural division of 

matrix cells that form new hair and causes 

the hair follicles to reach their (telogen) 

resting stage and fall out too early (73). 

Alopecia is thought to be caused by VPA 

and is related to its duration of use (74). It 

has been suggested to start with a low dose 

and gradually increase the dose to reduce 

VPA -induced hair loss (74).  

Another mechanism proposed for VPA-

mediated hair loss is the suppression of 

biotinidase activity which is responsible for 

the recycling of biotin. A study in 75 

paediatric patients found that VPA dose and 

biotinidase activity were inversely 

proportional (74). Taking biotin, zinc and 

selenium supplements may help reduce 

further hair loss. 

In contrast to oral intake of VPA, which 

causes hair loss, tests with topical 

application of VPA have shown hair 
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regeneration. VPA has been reported to 

inhibit glycogen synthase kinase 3β (GSK-

3β) and activation of the Wnt/β-catenin 

pathway, which in turn correlates with hair 

regeneration and anagen activation (75). A 

study of male patients with moderate 

androgenic alopecia treated with VPA 

spray for 24 weeks reported a significant 

increase in hair number compared to 

placebo (76).  

Further evidence on the effect of VPA 

on hair loss and regeneration is urgently 

needed. Different modes of application - 

internal and topical - resulted in contrasting 

hair outcomes.  

 

3.8.3 Nocturnal enuresis 

 

Nocturnal enuresis has been identified as a 

post-marketing side effect in VPA users 

and has been listed by the USFDA. 

Nocturnal enuresis is usually 

underdiagnosed or neglected by physicians. 

A study showed that secondary nocturnal 

enuresis is common in children taking 

VPA, with prevalence ranging from 15% to 

25% at 5 years of age and decreasing with 

age (77). The pathophysiology of VPA -

induced nocturnal enuresis is still 

unconfirmed. It is thought to be a 

multifactorial enuresis mediated by various 

causative factors such as maturation delays 

of the central nervous system, sleep 

disturbances, an undercapacitated bladder, 

urinary tract malformations, inadequate 

nocturnal antidiuretic hormone secretion 

and psychogenic factors (78). It could also 

be related to an increase in deep sleep after 

taking VPA (78), who could not control 

their urination to wake them up at night. 

 

3.8.4 Teratogenicity 

 

Because of the known teratogenic effects of 

VPA, pharmacists are encouraged to advise 

women of childbearing age of the risks and 

problems each time they have dispensed 

VPA and to give them a warning card.  

It has been reported that VPA use may 

increase the risk of congenital 

malformations in newborns to 6-12% 

compared to 2-3% in the general population 

(79).  

Based on their analysis of data from the 

European Registry of Antiepileptic Drugs 

and Pregnancy (EURAP) with over 3900 

pregnant mothers taking antiepileptic 

drugs, Tomson et al. (2011) reported that 

the occurrence of malformations is dose-

dependent and that patients on VPA have a 

higher risk of malformations compared to 

other antiepileptic drugs  (80).  

Commonly reported foetal 

malformations associated with VPA 

include spina bifida, atrial septal defect, 

cleft palate, hypospadias, polydactyly and 

craniosynostosis of the offspring.  

In a prospective, multicentre cohort 

study of women taking antiepileptic drugs 

by Meador and co-workers, significantly 

lower IQ was observed in the infants of 

mothers taking VPA compared with other 

antiepileptic drugs (81). The group also 

suggested that VPA should be avoided in 

women of childbearing age. 

Due to unfavourable side effects, the 

UK health authorities have proposed a 

'pregnancy prevention programme' for the 

prescription involving VPA (82):  

• The possibility of pregnancy in the 

woman and pregnancy tests must be 

determined before and during 

therapy.  

• The woman must be counselled 

about the risk to her unborn child 

from VPA and the importance of 

using contraception while taking the 

drug. 

• Women taking VPA are encouraged 

to have an annual specialist review, 

such as a risk assessment 4) There 

must be a visual warning on the 

pack of VPA about the dangers of 

VPA in pregnancy.  

Therefore, healthcare providers can 

encourage discussion of the benefits and 

risks of taking VPA in women of 
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childbearing age each time VPA is 

dispensed. 

 

4.0 Pharmacogenomic of VPA 

 

VPA pharmacogenomic profile indicates 

that genetic variations can significantly 

impact its efficacy and potential side 

effects. 

 

4.1 Cytochrome (CYP) Variants 

 

Approximately 15-20% of VPA is known 

to be metabolised via specific human 

cytochrome P450 (CYP) enzymes such as 

CYP2C9, CYP2B6 and CYP2A6 to 4-ene 

valproate and hydroxy metabolites, which 

have been associated with VPA -induced 

liver injury (83, 84).  

In paediatric patients, Budi et al. suggested 

that CYP2C9-catalysed oxidation is the major 

metabolic pathway for VPA (85). They also 

found that CYP2C9 status-guided VPA 

treatment in children led to a reduction in 

VPA misdosing and avoidance of side 

effects (86). In children carrying at least 

one or two CYP2C9 wild-type alleles 

(CYP2C9* 1/*1, CYP2C9* 1/*2 or CYP2C9* 

1/*3), controlled VPA treatment may result in a 

better response (86). 

The usual recommended dose may be 

given to children with normal CYP2C9 

expression (CYP2C9*1/*1); the dose may 

be reduced in children with heterozygous 

genotype (CYP2C9*1/*2 or CYP2C9*1/*3) 

and low CYP2C9 expression and increased 

in children with high CYP2C9 expression 

(CYP2C9*1/*1). In cases of dual loss-of-

function CYP2C9 alleles (CYP2C9*2/*2, 

CYP2C9*3/*3 or CYP2C9*2/*3) in children, it 

is recommended that an alternative 

antiepileptic drug (other than VPA) be 

administered due to the poor metabolism of 

VPA (63, 86, 87). 

 

4.2 Uridine diphosphate Glucuronosyl 

Transferase (UGT) Variants 

 

It is also known that glucuronidation 

(including UGT1A1, UGT1A9, UGT1A4, 

UGT1A6, UGT1A3, UGT2B7 and 

UGT2B15) is the major route of VPA 

excretion, with approximately 20-70% 

excreted as glucuronide conjugates in the 

urine (84). The three commonly reported 

non-synonymous polymorphisms of 

UGT1A6, including S7A, T181A and 

R184S, had no significant effect on VPA 

dose requirements and concentrations in 

children (88). Contrasting results were 

observed in studies of adult subjects. A 

study of 162 adult epilepsy patients on VPA 

monotherapy and stable epilepsy treatment 

showed that patients with the UGT1A6 

allele 19 T > G, 541A > G and 552A > C 

appeared to require a higher VPA dose and 

lower concentration-to-dose ratio (CDR) 

than non-carriers (89). Another 

observational study of 114 patients with 

epilepsy also showed no correlation 

between UGT2B7 and VPA efficacy (90).  

Undoubtedly, genetic variations influence 

the effect of VPA on the body. It is 

important to consider genetic differences 

when initiating and maintaining VPA 

treatment.  

 

4.3 Toxicities and Adverse Effects Genetic 

Variants 

 

VPA ingestion has been associated with 

serious adverse drug reactions, including 

liver damage, toxicity to mitochondria, 

teratogenicity, encephalopathy with 

hyperammonaemia and other adverse 

effects (84).  

Several adverse events associated to 

gene polymorphisms have been found to be 

induced by VPA. These include the T1405 

polymorphism of the CPS1 gene, which 

increases the incidence of 

hyperammonaemia in Caucasian patients 

(8), the Val16Ala polymorphism of the 

SOD2 gene, which leads to high serum 

levels of γ-glutamyltransferase in Japanese 

patients (91), and the LEPR and ANKK1 

gene polymorphisms associated with 

weight gain in Han Chinese (92) are some 

of the examples of VPA toxicities observed 

in a specific population.  
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A better understanding of the gene 

polymorphism and the use of VPA is 

therefore urgently needed in each 

population group to ensure its safe use.  

 

5.0 Conclusion 

 

This review highlighted much new 

information on VPA in all aspects of its 

pharmacokinetics, pharmacodynamics and 

pharmacogenomics. In terms of 

pharmacokinetics, the new information 

includes interaction with new drugs and 

serum concentration associated with 

variables. On the other hand, VPA has an 

effect on various systems and organs. 

Recent evidence suggests that it has 

neuroprotective and neurogenetic effects in 

brain infarcts and protects the lungs by 

reducing the risk of patients with acute 

respiratory failure. VPA has also been 

found to have a higher risk of hepatotoxicity 

in children and to have a significant effect on 

metabolic disorders after prolonged use.  

Gene polymorphisms of CYP 450, UGT, CPS1, 

SOD2, LEPR, ANKK1 and SCN1A are 

known to have adverse effects in some 

populations.   
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