

MARA UNIVERSITY OF TECHNOLOGY

HARDENING OF THE SMART EXPERIMENTAL

LEARNING

AHMAD ABDUL AZIM BIN MANSOR

BACHELOR OF SCIENCE (Hons.)

 IN DATA COMMUNICATION AND NETWORKING

FACULTY OF

INFORMATION TECHNOLOGY AND QUANTITATIVE SCIENCE

NOVEMBER 2007

HARDENING OF THE SMART EXPERIMENTAL LEARNING

By

AHMAD ABDUL AZIM BIN MANSOR

(2005730677)

A project paper submitted to

FACULTY OF INFORMATION TECHNOLOGY AND QUANTITATIVE

SCIENCES

MARA UNIVERSITY OF TECHNOLOGY

In partial fulfillment of requirement for the

BACHELOR OF SCIENCE (Hons.) IN DATA COMMUNICATION AND

NETWORKING

Major Area: Security

Approved by the Examining Committee:

MARA UNIVERSITY OF TECHNOLOGY, MALAYSIA

NOVEMBER 2007

COPYRIGHT © UiTM

CERTIFICATION OF ORIGINALITY

I declare that the work in this thesis was carried out in accordance with the regulations

of MARA University of Technology. It is original and is the result of my own work,

unless otherwise indicated or acknowledged as referenced work. This topic has not been

submitted to any other academic institution or non-academic institution for any other

degree of qualification.

In the event that my thesis be found to violate the conditions mentioned above, I

voluntarily waive the right of conferment of my degree and agree be subjected to the

disciplinary rules and regulations of MARA University of Technology.

……………………………………………

AHMAD ABDUL AZIM BIN MANSOR

2005730677

ii

COPYRIGHT © UiTM

ACKNOWLEDGEMENT

 In the name of ALLAH, the most gracious and the most merciful for without

Him, it is impossible for me to finish up my project and delivering this report on time.

 First and foremost, I would like to express my deepest gratitude to my academic

supervisor, Mr. Mohd. Ali Bin Mohd. Isa for his cooperation and suggestions in

providing me with vital information, materials and expertise as well as useful insights

on common issues relating to my project. Only Allah could repay your deeds.

 My sincere gratitude also goes to Faculty of Information Technology and

Quantitative Science lecturer, Mr. Adzhar Bin Abd. Kadir for the guidance, knowledge,

encouragement and advice.

 Special thanks to all of my friends who has helped me through thick and thin,

for giving me their full support, a lot of valuable information, guidance, motivation and

opportunity as well as pleasant relationship that will not be forgotten.

 Last but not least, I would like to thank my family for giving me their support;

cooperation and everything that can make me feel comfortable in order for me to finish

my project.

iii

COPYRIGHT © UiTM

ABSTRACT

Across the world, there exists a lack of computer security components in many

computer science curriculums. For those programs that do have such components in

computer security, a common difficulty is to integrate "real-world" labs into the

courses, in order to provide hands-on experiences to the learners. Due to concerns for

security breaches and network hacking, system administrators are reluctant to allow

computer security labs involving network sniffing, virus scripting, etc. to be deployed in

the campus network. Without hands-on, real-world projects, it is difficult for the

learners to integrate the acquired security theories and knowledge with up-to-date

security technologies and practices. For this reason, the purpose of this project paper is

to develop and implement a virtual lab module for undergraduate computer security

course covering the basics of network security. This project is called Smart

Experimental Learning. This virtual lab can be set up for a relatively small investment

and allows students to learn attacker techniques and how to defend against them. Little

specialized knowledge is required to set up the lab hardware and configure the

machines. The hardening process was also being done using various software available.

Basically, the results show that the hardening process can be done even the operating

systems were installed virtually and students can take this advantage to learn how to

harden a system in an environment whereby the results does not effect the real network

on the campus. It is hoped that by designing and implementing this virtual lab module

successfully, students can learn and experience what we called computer security.

iv

COPYRIGHT © UiTM

TABLE OF CONTENTS

TITLE PAGE

CERTIFICATION OF ORIGINALITY ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENT 2

1.3 RESEARCH QUESTION 3

1.4 OBJECTIVES 3

1.5 SCOPE OF THE RESEARCH 3

1.6 SIGNIFICANCE OF RESEARCH 4

CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION 5

2.2 HISTORY 6

2.3 CHALLENGES IN DESIGNING SECURITY LAB 6

2.4 VIRTUAL MACHINE 8

2.5 TECHNOLOGY 9

2.6 SIMILARITIES AND DISSIMILARITIES FROM PREVIOUS

RESEARCH

12

v

COPYRIGHT © UiTM

CHAPTER 3: METHODOLOGY

3.1 INTRODUCTION 17

3.2 CONCEPT AND DRAWING INNOVATION 18

3.3 WORK PHASES 18

3.4 PROJECT REQUIREMENTS 20

3.5 SYSTEM ARCHITECHTURE 21

3.6 CHALLENGES 22

3.7 DELIVERABLES 22

CHAPTER 4: RESULT AND ANALYSIS

4.1 INTRODUCTION 23

4.2 OPERATING SYSTEM AND VMWARE CONFIGURATION 24

4.3 SECURITY AT THE SYSTEM LEVEL 27

4.4 NETWORK SECURITY 27

4.5 HARDENING SSH 28

4.6 HARDENING USING BASTILLE 30

4.7 ROOTKIT DETECTOR 31

4.8 FIREWALL 33

4.9 HARDENING WINDOWS 34

4.10 CONCLUSION 38

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 INTRODUCTION 40

5.2 CONCLUSION 40

5.3 LIMITATION 43

5.4 RECOMMENDATION 44

BIBLIOGRAPHY 45

vi

COPYRIGHT © UiTM

LIST OF FIGURES

FIGURE NO. TITLE PAGE

FIGURE 1 WORK PHASES 18

FIGURE 2 SYSTEM ARCHITECTURE 21

FIGURE 3 UBUNTU RUNNING ON SMART EXPERIMENTAL

LEARNING

26

FIGURE 4 MICROSOFT WINDOWS XP RUNNING ON SMART

EXPERIMENTAL LEARNING

26

FIGURE 5 NMap OUTPUT ON UBUNTU 28

FIGURE 6 USING SSH VIA PORT 2200 29

FIGURE 7 NMap AFTER SSH HARDENING 30

FIGURE 8 CHKROOTKIT SCAN 33

FIGURE 9 Seconfing XP CONFIGURATION 35

FIGURE 10 NMap OUTPUT BEFORE CONFIGURING Seconfig XP 36

FIGURE 11 NMap OUTPUT AFTER CONFIGURING Seconfig XP 36

FIGURE 12 SafeXP CONFIGURATION 37

vii

COPYRIGHT © UiTM

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

For the past decade, partly due to the widespread use of the Internet, computer

security has become a top issue in industry, academic and government. The demand for

well-trained security professionals has grown dramatically. The integration of security

into computing curricula, however, has not kept up with this demand. A related problem

is, most existing computing courses lack security components. The problems are even

more serious for universities such as Universiti Teknologi MARA (UiTM) where

resources tend to be limited.

For those programs that do have courses in computer security, a common

difficulty is to integrate "real-world" labs into the courses, in order to provide hands-on

experiences to the learners. Due to concerns for security breaches and network hacking,

system administrators are reluctant to allow computer security labs to be deployed in

the campus network. Unless deployed in an isolated computer lab, projects involving

hacking techniques, such as network sniffing and virus scripting, are generally

1

COPYRIGHT © UiTM

prohibited in the campus network. Without hands-on, real-world projects, it is difficult

for the learners to integrate the theories and knowledge acquired in the classroom with

up-to-date security technologies and practices.

In order to solve this problem, Smart Experimental Learning will be designed

and implemented to help students especially who are taking computer security courses

in UiTM to experience and explore the natural world of security. This lab module will

be designed for students to learn on how to harden an operating system. Smart

Experimental Learning model helps assure an optimum learning experience for the

student. Based on VMware, virtual machine technology, users are able to perform the

required hardening on the guest operating system. By doing this lab module, students

should be able to experience the real world of computer security.

1.2 PROBLEM STATEMENT

Teaching security courses is proved to be difficult because students cannot

experience the real environment in order to protect the campus network. The cost to

setup a real laboratory for security purposes is also proved to be costly. Student cannot

experience the real environment if they want to defend a system from being attacked.

Student also has less practical experience on the network and web security.

The Smart Experimental Learning will provides hands-on experience for

students to study cutting-edge computer security technologies, and serves as a test bed

for projects which are otherwise impossible to implement in general-purpose labs. By

doing the hardening, student can be exposed to the real networking environment

whereby this will help them when they work in the future.

2

COPYRIGHT © UiTM

1.3 RESEARCH QUESTION

 The research questions for this project are:

i) What are the tools that will be used in order to develop Smart

Experimental Learning?

ii) How to harden the Smart Experimental Learning?

1.4 OBJECTIVES

The objectives of this research are:

i) To develop Smart Experimental Learning using VMware.

ii) To harden the Smart Experimental Learning using various tools

available.

1.5 SCOPE OF RESEARCH

The scopes of this research are:

i) Smart Experimental Learning will be developed using VMware virtual

machine. It will also use various types of operating system and software

in order to do the required hardening.

ii) This research will focus more on how to harden the system.

iii) Smart Experimental Learning will be targeted to be used by students

who are taking security courses in UiTM.

3

COPYRIGHT © UiTM

1.6 SIGNIFICANCE OF RESEARCH

Smart Experimental Learning will be developed in order to give the students real

environment and let them experience it all. Students can work in real environment

where they can learn on how to defend a host or network from being attacked. This can

certainly open their mind and teach them the real security life. It will permit students to

safely explore the usage, effects and defense against various attacks.

4

COPYRIGHT © UiTM

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Computer network security is generally taught with two varying approaches.

One approach, which is typical of graduate level courses, has a theoretical focus.

However, within industry, computer security, particular network security training, takes

a much more applied focus. Here, the same tools used by attackers to illegally scan,

probe, and gain access to computer networks are taught to and ultimately used by the

computer security professional. There are two aspects to this latter approach. First, the

attacker tools can be used by the defender to probe the network for security

vulnerabilities which having been discovered can then be eliminated. Secondly, an

understanding of how the attacker tools work is vital to understanding how to defend a

network against them. Such a lab can be set up for a minimal expenditure of resources.

Counter Hack by Ed Skoudis is an excellent textbook for this approach.

5

COPYRIGHT © UiTM

2.2 HISTORY

Computer networking has become so ubiquitous that every computer system of

any importance is networked to others. The Internet Domain Survey (see www.nw.com)

reports that there are 162,128,493 hosts in the DNS, as of July 2002. The older security

problems of insider breaches of security are now compounded by attacks carried out

remotely through the network. This is fueling the growth of what are known as

“network firewalls” and increased deployment of security tools. Graduates from typical

degree programs in Computer Science and Engineering are familiar with stories of

security breaches as reported in the media, but do not have a technical grasp of the

security issues. There is an urgent need for training the students in computer and

network security.

2.3 CHALLENGES IN DESIGNING SECURITY LAB

The use of specialized computer security labs for teaching computer security

related courses has long been advocated by computer science educators. There exist

many challenges in setting up realistic computer security laboratories and assignments.

Some of the challenges are listed below:

i) Need to protect campus networks

Due to the widespread virus attacks and hacking incidents, the system

administrator is justifiably concerned with the health of the networks that

he/she is responsible for. To avoid security breaches caused by security and

hacking programs running in the computer security lab, most universities

isolate their computer security labs from the rest of the campus network.

6

COPYRIGHT © UiTM

ii) Need to access the Internet

Students and faculty who use the computer security lab do have the need to

connect to the Internet to, for example, get information, download security

software, etc. It is inconvenient for a whole class of students to share one or

two workstations in order to access the Internet.

iii) Resource needs for students to develop their solutions

Students may not always have their own computers, and their own

computers may not mimic the environment of the proposed assignments.

The computer security lab needs to provide needed resources for students to

develop their assignment solutions. Furthermore, to provide consistency in

assignment evaluations, it is desirable for students to work in identical

environments, even when they can set up similar environments in their own

computers.

iv) Easy and secure access to the resources

The resources available in the lab should be easily accessible. Students

may choose to use the lab either locally or remotely (e.g., from home or

from their work place). Remote access to the lab, however, tends to prompt

security concerns, mainly due to the widespread hacking incidents launched

over the Internet.

v) Incorporation of latest technological development

Computer technologies are notorious for their fast-paced change. New

technologies are constantly created. To accommodate the latest

technological development, such as wireless networking, secure remote

access, etc., it is important that the design of the security lab be scalable, in

the sense that additional test beds or components may be easily added to the

existing network. A security lab has to take extensibility and

reconfigurability into account to accommodate new technologies.

7

COPYRIGHT © UiTM

2.4 VIRTUAL MACHINE

 One of the earliest Virtual Machine (VM) systems was CP-40, developed for an

IBM System/360 Model 40. A VM system was defined as a computing system in which

the instructions issued by a program may be different from those actually executed by

the hardware to perform a given task. More generally, a VM can be categorized as a

“software abstraction with the looks of a computer system’s hardware (real machine)”.

Advantages of VMs including:

• Concurrently executing multiple operating systems supporting different users

• Developing software for one machine on a different machine

• Insulating one software environment executing on a VM from failures in others

 VM systems were also purported to enhance computer system security if the

programs of independent and possibly malicious users are to coexist on the same

computer system. It was recognized that a combined virtual machine monitor/operating

system (VMM/OS) approach to information system isolation provides substantially

better software security than a conventional multiprogramming operating system

approach. In addition, VM systems offered a very suitable basis for system development

given the independence of VM’s and their support for debugging and monitoring of

systems activities.

 Recently, the use of VM concepts has experienced a rebirth in computing. VM

software such as Xen and VMware introduces an abstraction layer between operating

systems and computer hardware which enables multiple virtual servers to share a

common pool of hardware resources. Other VM software such as VMware Workstation

creates virtual hardware environments within a host operating system that enables other

operating systems and their applications to execute within encapsulated virtual

machines. This form of VM software is commonly used to test system and application

8

COPYRIGHT © UiTM

software under multiple operating systems or operating system versions on a single

physical machine. Modern VM software such as VMware provides the benefits

described earlier including concurrently executing multiple operating systems in

separate VMs and isolating each VM from bugs and malicious code in other VMs.

Additional benefits include the ability to configure virtual networks. Early VM’s

consumed about 10-15% of the underlying computing resources. Modern VMs consume

just a few percentage points of the physical machine resources.

 Prior to the return of VM’s, the academic computing community was forced to

fund dedicated computer labs in order to each advanced classes covering topics such as

system administration, network design, and information security. However, such labs

are expensive and often feasible only with external funding. The reemergence of VM

software enables educational institutions to configure shared, multi-course computing

labs in which students in advanced courses can undertake system-level projects. VM

features such as isolation, compatibility, and encapsulation allow an instructor to build

virtual network topologies encompassing multiple, independent operating systems and

networks.

2.5 TECHNOLOGY

VMware Workstation is a virtual machine software suite for x86 and x86-64

computers from VMware, a division of EMC Corporation. This software suite allows

users to set up multiple x86 and x86-64 virtual computers and to use one or more of

these virtual machines simultaneously with the hosting operating system. Each virtual

machine instance can execute its own guest operating system, such as Windows, Linux,

BSD variants, or others. In simple terms, VMware Workstation allows one physical

machine to run multiple operating systems simultaneously. Other VMware products

help manage or migrate VMware virtual machines across multiple host-machines.

9

COPYRIGHT © UiTM

Besides bridging to existing host network adapters, CD-ROM devices, hard-disk

drives, and USB devices, VMware Workstation also provides the ability to simulate

some hardware. For example, it can mount an ISO file as a CD-ROM, and .vmdk files

as hard disks; and can configure its network adapter driver to use network address

translation (NAT) through the host-machine rather than bridging through it (which

would require an IP address for each guest-machine on the host network).

VMware Workstation also allows the testing of LiveCDs without first burning

them onto physical discs or rebooting the computer. One can also take multiple

successive snapshots of an operating system running under VMware Workstation. Each

snapshot allows you to roll back the virtual machine to the saved status at any time. The

ability to use multiple snapshots makes VMware Workstation useful as a tool for sales-

people demonstrating complex software products, and for developers setting up virtual

development-environments and virtual test-environments. VMware Workstation

includes the ability to designate multiple virtual machines as a team which

administrators can then power on and off, suspend, and resume as a single object —

making it particularly useful for testing client-server environments.

Keeping the hardware and virtual machine terminology unambiguous is

essential to discussions of virtualization. VMware refers to the physical hardware

computer as the host machine, and identifies the operating system (or virtual appliance)

running inside a virtual machine as the guest. This is common for personal and

enterprise-wide VMware software. Like an emulator, VMware software provides a

completely virtualized set of hardware to the guest operating system. VMware software

virtualizes the hardware for video adapter, network adapter, and hard disk adapters. The

host provides pass-through drivers for guest USB, serial, and parallel devices.

Thus, VMware virtual machines are highly portable between computers,

because every host looks nearly identical to the guest. In practice, a virtual machine

guest can pause operation, be moved or copied to another physical computer, and there

10

COPYRIGHT © UiTM

resume execution exactly where it left off. Alternately, for enterprise servers, a feature

called VMotion allows the migration of operational guest virtual machines between

similar but separate hardware hosts sharing the same SAN.

However, unlike an emulator, such as Virtual PC for PowerPC Macintosh

computers, VMware software does not emulate an instruction set for different hardware

than is physically present. Problems occur when the virtual machine guest is moved

between hardware hosts using different instruction sets (such as found between Intel

and AMD CPUs), or between hardware hosts with a differing number of CPUs.

Conventional emulators (such as Bochs) emulate the microprocessor, executing

each guest-CPU instruction by calling a software subroutine on the host machine that

simulates the function of that CPU instruction. This abstraction allows the guest

machine to run on host machines with a different type of microprocessor, but also

operates very slowly. Dynamic recompilation offers an improvement on this approach:

it dynamically compiles blocks of machine instructions the first time they execute, and

later uses the translated code directly when the code runs a second time. Microsoft's

Virtual PC for Mac OS X takes this approach.

VMware Workstation takes an even more optimized path, and uses the CPU to

run code directly whenever possible (as, for example, when running user-mode and

virtual 8086 mode code on x86). When direct execution cannot operate, VMware

software re-writes code dynamically. This occurs with kernel-level and real-mode code.

VMware puts the translated code into a spare area of memory, typically at the end of the

address-space, which it can then protect and make invisible using the segmentation

mechanisms. For these reasons, VMware operates dramatically faster than emulators,

running at more than 80% of the speed that the virtual guest operating-system would

run on hardware. VMware Inc. boasts an overhead as small as 3%-6% for

computationally-intensive applications.

11

COPYRIGHT © UiTM

Although VMware virtual machines run in user-mode, VMware Workstation

itself requires installing various drivers in the host operating-system, notably in order to

dynamically switch the GDT and the IDT tables. Many people erroneously believe that

VMware and Virtual PC replace offending instructions or simply run kernel-code in

user-mode. Both of these approaches run into difficulties on x86-based platforms.

Replacing instructions means that if the code reads itself it may fail to find the expected

content; one cannot protect code against reading and at the same time allow normal

execution; replacing in-place becomes complicated. Running the code unmodified in

user-mode will also fail, as most instructions which just read the machine-state do not

cause an exception and will betray the real state of the program, and certain instructions

silently change behavior in user-mode. One must always rewrite; performing a

simulation of the current program counter in the original location when necessary and

(notably) remapping hardware code breakpoints.

2.6 SIMILARITIES AND DISSIMILARITIES FROM PREVIOUS

 RESEARCH

 There are 15 previous researches that had been studied to make a comparison to

my project:

2.6.1 Implementing a Minimal Lab for an Undergraduate Network

Security Course (Tom Wulf, 2003)

The researcher describes the implementation and usage of a

minimal lab in an undergraduate computer security course covering the

basics of network security. The similarity is the implementation of a

security lab for computer students.

12

COPYRIGHT © UiTM

2.6.2 Designing a Flexible and Multipurpose Remote Lab for the IT

Curriculum (Steve Rigby, 2006)

This research is all about analyzing current trends in remote lab

design and explores a design that intends to increase utilization between

courses, lower costs, ease management, and reduce the time needed to

implement remote labs. The similarities are designing and implementing

a remote lab.

2.6.3 A Laboratory-based Course on Internet Security (Prabhaker Mateti,

2003)

The researcher discusses the security course and explains how

others can set up their own labs to teach this course. All the laboratory

work is conducted in a laboratory. The similarities are the phase needed

to setup a laboratory for security course

2.6.4 Design of a Distributed Computer Security Lab (Ping Chen, 2004)

This research is mainly about the general model of distributed

computer security lab and the implementation of it. The similarities are

the implementation of a computer security lab.

2.6.5 Using VMware for Dual Operating System (Rance D. Necaise, 2001)

 The researcher reviews the common approaches and introduces

the use of VMware for dual operating system. The similarities are the

researcher used VMware to install dual operating system on a single

host.

v

13

COPYRIGHT © UiTM

2.6.6 Using VMware and Live CD’s to Configure a Secure, Flexible, Easy

to Manage Computer Lab Environment (David Collins, 2006)

 This research is discussing about how to setup and configure a

computer lab environment using VMware and Live CD. The similarities

are the tool used in this research is the same as my research.

2.6.7 Protecting Browser State from Web Privacy Attacks (Collin

Jackson, 2006)

This research is about protecting web browser from being attack

and methods done in order to counter the attack. The similarities are the

study on the attack and the counteract measures done in order to

overcome it.

2.6.8 Abstracting Application-Level Web Security (David Scott, 2002)

The researcher investigates new tools and techniques which

address the problem of application-level of web security. He also

presented a tool which can assist programmers to develop secure

applications which are resilient to a wide range of attacks. The

similarities are addressing the problem of application-level of web-

security and how to defend against various attacks.

2.6.9 Scalable Network-based Buffer Overflow Attack Detection (Fu-Hau

Hsu, 2006)

This research paper presents a network-based low performance

overhead buffer overflow attack detection system called Nebula1, which

can detect both known and zero-day buffer overflow attacks based solely

on the packets observed without requiring any modifications to the end

hosts. The similarities are method used to detect a network from being

attacked.

13

14

COPYRIGHT © UiTM

2.6.10 Hardening Web Browsers against Man-in-the-middle and

Eavesdropping Attacks (Haidong Xia, 2005)

This research is mainly about how to harden web browsers from

being attacked. The similarities are about how to harden web browsers.

2.6.11 A Requires/Provides Model for Computer Attacks (Karl Levitt,

2001)

This research describes a flexible extensible model or computer

attacks, a language for specifying the model, and how it can be used in

security applications such as vulnerability analysis, intrusion detection

and attack generation. The similarities are the study on various attacks on

the networks and methods used to defend against it.

2.6.12 Learning Attack Strategies from Intrusion Alerts (Peng Ning, 2003)

This paper presents techniques to automatically learn attack

strategies from correlated intrusion alerts, measures the similarity

between attack strategies in terms of the cost to transform one strategy

into another and some experimental results, which demonstrate the

potential of the proposed techniques. The similarities are the study on the

attack and strategy to overcome it.

2.6.13 Defending Against an Internet-Based Attack on the Physical World

(Simon Byers, 2002)

The researcher discuss the dangers that scalable Internet

functionality may present to the real world, focusing upon an attack that

is simple, yet can have great impact and various solutions to this class of

attack and hope to provide a warning to the Internet community of what

is currently possible. The similarities are the study on the attack and

various solutions to the attacks.

15

COPYRIGHT © UiTM

2.6.14 Towards Agile Security in Web Applications (Vidar Kongsli, 2006)

 The researcher presents an approach that he used to address

security when running projects according to agile principles. Penetration

testing, system hardening and securing deployment also have been

elaborated in this research. The similarities are the deployment of

security and how to harden a system.

2.6.15 Real Attacks on Virtual Networks: Vivaldi out of Tune (Walid

Dabbous, 2006)

In this paper, the researcher identifies different attacks against

coordinates embedding systems and study the impact of such attacks on

the recently proposed Vivaldi decentralized positioning system. The

similarities are about different attacks and the study of the impacts of

these attacks to the system. The dissimilarities are it used Vivaldi

decentralized positioning system.

16

COPYRIGHT © UiTM

