

COMPARISON OF MECHANICAL CHARACTERISTICS OF OIL PALM FRUIT BUNCH FIBRE (EFB)-POLYPROPYLENE (PP) COMPOSITE WITH OTHER COMPOSITE COMPOSITIONS

ROSMANIZAM BINTI MOHD DALI (2001448717)

A thesis proposal submitted in partial fulfilment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

APRIL 2005

ACKNOWLEGDEMENT

First of all, I would like say Alhamdulillah. Then, I would like to express my sincere appreciation to Puan Anizah binti Kalam, the supervisor of my thesis for her patience, generous guidance, encouragement and help. To Encik Razak Rohany, the General Manager of Poly Composite Sdn. Bhd. Malaysia for his helping hands in supplying samples and giving priceless information required. The appreciation also goes to my parents, staff and friends for their understanding, support and help in so many ways in the duration of the thesis preparation until it is complete. Thank you.

ABSTRACT

Malaysia is the largest producer of palm oil in the world. The utilisation of oil palm fruit bunch in making palm oil contributing to so many oil palm empty fruit bunch and other residues of oil palm tree such as trunks and fronds. Therefore, many researchers and scientists not only in Malaysia tend to do research on how to manage of those residues or left over material including empty fruit bunch. They also want to develop or produce a value added products such as furniture, building and construction materials and many other consumer goods.

Recent studies on EFB came out with a new material composed of EFBpolypropylene (PP) composite which is claimed has a high strength, lower cost, versatile, recyclable, and environmental friendly.

Our study is still on EFB-PP composite however, we only wanted to analyse and compared its mechanical properties between two different compositions of sample. One of them consist no added additive while the other consist of added additive that is carbon. The specimens were sheet form supplied by PolyComposite Sdn. Bhd. Malaysia. The sheet was in average of 2 mm and 3mm thick.

After conducting tensile test, bending test, and strain gauge test, it was found that the Young's modulus of both sample is as much likely the same as calculated by Anizah et al for their EFB-epoxy composite. The same result was given by the supplier technical specifications. The value obtained from this study was typically in range with specification from supplier, except for flexural modulus obtained.

vi

TABLE OF CONTENTS

CONTENTS

a^r

PAGE

÷

,

PAGE TITLE		iv
ACKNOWLEGDEMENT		V
ABSTRACT	а)	vi
TABLE OF CONTENTS		vii
LIST OF TABLES		x
LIST OF FIGURES		xi
LIST OF ABBREVIATIONS		xii

CHAPTER I INTRODUCTION

1.1	Introduction of	
	1.1.1 What is composite?	1
	1.1.2 Why using oil palm empty fruit bunch fibre?	3
	1.1.3 Why using polypropylene?	5
1.2	Objectives	
1.3	Scope	
1.4	Summary	7

CHAPTER II LITERATURE REVIEW

2.1	Introduction	8
2.2	Significance	10
2.3	Outline of overall process	10
	2.3.1 Material description	10

		2.3.2 Overall process	12
	2.4	Summary	13
CHAPTER III	METH	ODOLOGY	
	1.1	Sample preparation	14
	1.2	Tensile Test	15
	1.3	Bending Test	17
	1.4	Strain Gauge Test	18
	1.5	Density test	19
	1.6	Standard	19
*	1.7	Summary	19
		2 · · · · · · · · · · · · · · · · · · ·	
CHAPTER IV	RESU	LTS AND DISCUSSIONS	
	4.1	Density Test	20
	4.2	Tensile Test	22
	4.3	Bending Test	24
Ŷ	4.4	Strain Gauge Test	26
	4.5	Observation on Fractured Surfaces	27
	4.6	Summary	29
CHAPTER V	CONC	LUSION	
	5.1	Density Test	30
	5.2	Tensile Test	31
	5.3	Bending Test	31
	54	Strain Gauge Test	32

0.4	Strain Gauge rest	JZ
5.5	Observation on Fractured Surfaces	32
5.6	Summary	33

CHAPTER VI RECOMMENDATION

	6.1	Recommendation	33	
REFERENC	ES		34	
APPENDICE	S		37	
Appendix I	Test	results for tensile test on Type 1 Specimen	37	