AN ENHANCED TRANSMISSION RATE WITH EFFICIENT BANDWIDTH USING DIVERSITY TECHNIQUE FOR OFDMA RESOURCE ALLOCATION

MUHAMMAD HUSAINI BIN GHAZALI

Dissertation submitted in partial fulfillment of the requirements for degree of Bachelor of Engineering (HONS) Electronics Engineering (Communication)

FACULTY OF ELECTRICAL ENGINEERING

JULY 2014

ACKNOWLEDGMENT

Alhamdunillah and thanks to Allah S.W.T for giving the strength and patient in finishing this thesis in time.

I would like to express my deepest thanks many people for helping doing this final year project report. In particular, I wish to thank to my supervisor Dr Azlina Binti Idris for guidance and friendship. She never gives up on giving support when there are troubles during the process of finishing this research.

I would never been ever to accomplish this final project without the support of my family. Their supportive never stop from the start until finishing of this research.

My sincere appreciation to my entire friend (EE2408B) for helping and give tips and support that is very useful to make this project. Also not forgotten to my partner group under the same supervision of Dr Azlina Binti Idris, Mohd Zahir and Nur Arrifin for advice and prayer. I am grateful having all of you beside me. Thank you very much.

ABSTRACT

MIMO-OFDMA (Multiple Input Multiple Output-Orthogonal Frequency Division Multiple Access) resource allocation is studied in this paper. The considered problem is to provide each user with more data rate in wireless communication system. The objectives of this research focus on transmission rate on how to maintain or increase the data rate with efficient bandwidth. Diversity technique is also applied to see which one is the best for maximum achievement diversity between space time diversity, space frequency diversity and space time-frequency diversity. The simulation will show which technique will achieve the maximum diversity order in MIMO-OFDMA system and the suitable bandwidth to improve transmission rate.

TABLE OF CONTENTS

TITLE		Pages
ACKNOWLEDGEMENT		iii
ABSTRACT		iv
LIST OF FIGURES		vii
LIST OF TABLES		viii
LIST OF ABBREVIATIONS		ix
1.0	INTRODUCTION	
1.1	Background of study	1-7
1.2	Problems Statement	8
1.3	Objectives of research	9
1.4	Scope of Research	9
1.5	Contribution	10
1.6	Organization of the Dissertation	11
2.0	LITERATURE REVIEW	
2.1	Introduction	12-13
2.2	OFDMA	14-16
2.3	Challenges in the OFDMA system	17
2.4	Advantages and Disadvantages of OFDM and OFDMA	18-19
2.5	Resource Allocation	20-21
2.6	Quality of Service (QoS) in wireless communication	22-23
2.7	Sensitivity of Bit Error Rate (BER) performance in OFDMA	24-25
2.8	OFDMA Resource Allocation Parameters	26
2.9	Type of Antenna used	27-28
2.10	Cognitive Radio (CR)	29-30
2.11	Diversity Techniques	31-33
3.0	METHODOLOGY	
3.1	Introduction	34
3.2	Proposed Transmission Rate	34-36

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The wireless communication technologies growth is fast until now. One of the technologies is Orthogonal frequency division multiple access (OFDMA) which is broadband wireless air interface. OFDMA is a form of orthogonal frequency division multiplexing (OFDM) which it's a technique that has high potential for high speed wireless multiuser communication network.

The term Wi-Fi is obviously refers to the 802.11 standards. There are 802.11 a, b, g and n within the standards. This standard was known as indoor wireless networks. Many vendors want to extend these capabilities to outdoor networks by building Media Access Control (MAC) and Physical layer (PHY) systems. Some of it are using single carrier. Several leveraged OFDM capabilities. While others chose another approaches of Wideband Code Division Multiple Access (WCDMA) and Universal Mobile Telecommunication System (UMTS). The main idea was to create an advancement outdoor network.

Figure 1.1.1: air interface standards[28]