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Reverse migration is an increasingly urgent issue as it is influenced by 
various factors such as economic crises, political turmoil, natural 
disasters, and the COVID-19 pandemic. Predicting reverse migration 
can provide valuable insights for policymakers and stakeholders to 
design appropriate interventions. However, there is a scarcity of 
studies that have applied machine learning algorithms to this problem. 
This paper aims to fill the gap in the literature by discussing the 
application of machine learning algorithms for predicting reverse 
migration. The study compares the performance of three types of tree-
based machine learning (Decision Tree, Random Forest, Gradient 
Boosted Trees) with linear-based algorithms (Logistic Regression, 
Fast Last Margin, Generalized Linear Model).  In addition to accuracy, 
this study also measured the area under the curve (AUC) metric, which 
has been seldom explored in previous research of reverse migration 
prediction. The findings revealed that tree-based machine learning 
algorithms performed slightly better than linear-based algorithms in 
terms of accuracy of prediction, with an improvement of approximately 
1%. Based on the accuracy and AUC results, Gradient Boosted Trees 
is selected as the best algorithm. The findings of this study suggest 
that machine learning can provide valuable insights into predicting 
reverse migration. With the use of appropriate machine learning 
algorithms, policymakers and stakeholders can make more informed 
decisions to address the challenges posed by reverse migration.  
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1. Introduction 

Machine learning, a subset of artificial intelligence, has gained widespread popularity in 
recent years due to its ability to analyze vast amounts of data and identify patterns and insights that 
might be difficult for humans to detect. In healthcare, for example, machine learning algorithms are 
being used to analyze patient data[1]. In finance, machine learning is being used to detect tax 
avoidance [2] and financial decision-making[3]. These are just a few examples of how machine 
learning is being applied across a range of domains, highlighting its potential to revolutionize various 
industries. 

Machine learning algorithms can be broadly grouped into two categories: linear-based and 
tree-based. While linear algorithms have been commonly used in the past, tree-based algorithms 
have gained significant popularity in recent years due to their ability to handle non-linear relationships 
and interactions between variables. Despite this, there are limited studies that compare the 
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performance of linear and tree-based models, particularly in the context of reverse migration 
prediction. 

The phenomenon of reverse migration has gained more attention in recent years, particularly 
in the wake of economic downturns, political instability, natural disasters, and the COVID-19 
pandemic. These events have led to the displacement of migrant workers in urban areas, causing 
them to return to their rural homes[4]. The consequences of reverse migration can be significant, 
affecting not only the social and economic well-being of the returnees but also the industries and 
employers that rely on migrant workers[5]. Accurately predicting reverse migration can help 
policymakers and stakeholders design and implement appropriate interventions to mitigate its 
negative effects. Despite the potential benefits of applying machine learning algorithms for predicting 
reverse migration, only a limited number of studies have explored this problem[6]. Thus, the present 
study aims to address this research gap by comparing the performance of linear-based and tree-
based machine learning algorithms in predicting reverse migration. 

The contributions of this study are two-folds.  First, the findings provide valuable insights for 
policymakers and stakeholders in addressing the problem of reverse migration.  Second, the 
comparison between tree-based and linear-based machine learning algorithms on both accuracy 
and area under the curve (AUC) performance metrics.  AUC is a better evaluation metric than 
accuracy because it takes into account the overall performance of a model across different 
thresholds of classification. AUC measures the model's ability to correctly classify both positive and 
negative cases, regardless of the threshold used for classification. Accuracy, on the other hand, only 
measures the percentage of correct predictions made by the model. It is sensitive to the class 
imbalance problem, where the majority class can dominate the prediction results and lead to 
misleading accuracy scores.  Therefore, AUC is a better metric to use when the class distribution is 
imbalanced or when the cost of false positives and false negatives is not equal. It provides a more 
comprehensive view of the model's performance and is less affected by class distribution than 
accuracy. 

 
 

 
2. Literature Review 

Tree-based machine learning[7],[8] is a type of algorithm that constructs decision trees to 
make predictions or classify data. Random Forest, Gradient Boosted Trees, and Decision Trees are 
examples of tree-based machine learning algorithms. Random Forest is an ensemble of decision 
trees, where each tree is constructed using a subset of the training data and a random subset of 
features[9]. Gradient Boosted Trees is another ensemble method, where each tree is constructed to 
correct the mistakes of the previous tree[8]. Decision Trees are single trees that recursively split the 
data based on the most informative feature until the tree reaches the maximum depth or a stopping 
criterion [8]. Decision trees are a flowchart-like structure, where each internal node represents a 
feature or attribute, each branch represents a decision rule, and each leaf node represents a class 
label or a prediction.   

TPOT (Tree-based Pipeline Optimization Tool) is a machine learning algorithm that is also 
based on the tree paradigm[10],[11]. However, TPOT is an automated machine learning tool that 
uses Genetic Programming to optimize the pipeline of the machine learning model. The goal of TPOT 
is to automate the process of selecting the best pipeline and hyperparameters for a given dataset.  
While TPOT has shown promising results in other applications, it requires extensive work to be used 
effectively and was therefore not included in this study. 

Linear machine learning is a class of algorithms that are widely used for modeling 
relationships between a dependent variable and one or more independent variables. These 
algorithms are based on a linear equation that relates the input variables to the output variable. Some 
of the commonly used linear machine learning algorithms include linear regression, logistic 
regression, and generalized linear models. These algorithms are simple to understand, easy to 
implement, and fast to train on large datasets. However, they have certain limitations in terms of their 
predictive performance, especially when the relationship between the input and output variables is 
nonlinear or complex. To overcome these limitations, tree-based machine learning algorithms have 
been developed, which can handle nonlinearity and complex relationships between input and output 
variables. 

Several research have investigated the use of machine learning for human migration domain 
but limited that deal with reverse migration. For example, researcher in [12] proposed a deep learning 
approach for modeling return migration patterns in the Netherlands. The study used several 
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variables, including demographic and socio-economic factors, to predict the likelihood of return 
migration for different regions in the country. In previous studies, Random Forest has been applied 
to mine large-scale human mobility data to predict long-term crime patterns [13]. In [14], researchers 
examined the challenges associated with human mobility prediction and discussed the potential of 
deep learning techniques to address these challenges. To predict the staying time of international 
migrants, a hybrid model of Particle Swarm Optimization and Support Vector Machine was proposed 
in [15]. These studies demonstrate the potential of machine learning for predicting reverse migration 
and identifying the key factors influencing migration decisions. 

In the context of binary classification models such as reverse migration, accuracy, 
classification error, sensitivity, and specificity are the commonly used performance metrics. However, 
the AUC is considered a more robust measure of model performance[8]. AUC is calculated as the 
area under the receiver operating characteristic (ROC) curve. ROC is a chart that shows how well a 
binary classification model performs at different threshold levels for determining which class an input 
belongs to. It plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at 
various threshold settings. The ROC curve shows the trade-off between sensitivity and specificity, 
and a classifier with high accuracy will have an ROC curve that hugs the upper left corner of the plot. 
AUC provides an evaluation of the model's ability to distinguish between positive and negative 
classes across a range of possible classification thresholds. AUC ranges from 0 to 1, with 0.5 
indicating random guessing and 1 representing perfect classification or discrimination between the 
two classes. A high AUC value indicates that the model has good predictive performance across a 
range of classification thresholds, while a low AUC value indicates poor performance. 

 
 
 

3. Methodology 

3.1 The dataset 
The dataset is a set of 104 secondary data provided by the Department of Statistics Malaysia 

(DOSM) on the migration of Malaysian peoples in the year of 2018. Out of the entire dataset, 63 
instances were allocated for training, while the remaining 41 instances were reserved for testing. To 
ensure that the distribution of independent variables in the testing data is representative of the overall 
dataset, the stratified sampling was used for splitting the training and testing dataset. Stratified 
sampling is a sampling technique where the population is divided into subgroups or strata based on 
one or more variables, and then random samples are taken from each stratum[16]. In this way, the 
sample is more representative of the overall population. RapidMiner software is the platform to 
process the dataset. 

The dependent variable (DV) for the prediction model is class of reverse migration either 1 
or 0 for presenting migration and no migration respectively. The independent variables (IVs) are 
given in Figure 1 that also presents the correlation coefficients of each IV to the DV based on Pearson 
Correlation test run in the RapidMiner. 

 
 

 
 

Figure 1. Correlation between each IV to DV 
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Based on the correlation coefficients provided in Figure 1, it is evident that the IVs related to 
migration exhibit nonlinearity in their relationship with the DV. The low correlation coefficients below 
0.3 suggest that there is no strong linear correlation between the migration IVs and the DV. This 
nonlinearity could indicate the presence of more complex relationships between the variables that 
may not be easily captured by linear-based machine learning. Only the Negeri_destinasi variable 
shows a strong correlation coefficient of 0.74 with the dependent variable.  

However, despite the low correlation coefficients between the independent variables and the 
dependent variable, it is still worthwhile to include them in the machine learning model. While they 
may not individually have a strong impact on predicting reverse migration, they may contain valuable 
information that can contribute to the overall accuracy of the model. Furthermore, machine learning 
algorithms are capable of identifying complex and non-linear relationships between variables that 
may not be captured by simple correlation coefficients.     

 
3.2 Machine learning algorithm 

The study used three types of tree-based machine learning (Decision Tree, Random Forest, 
Gradient Boosted Trees) and three types of linear-based algorithms (Logistic Regression, Fast Last 
Margin, Generalized Linear Model). The implementation platform for all the algorithms is RapidMiner. 
AutoModel was used as the preliminary for determining the algorithm specifications. AutoModel in 
RapidMiner is an automated machine learning tool that simplify the machine learning process by 
automating tasks such as algorithm selection, and hyperparameter tuning based on a combination 
of heuristics. Table 1 displays the configuration that achieved the highest accuracy results, as 
determined by the AutoModel.  

 
 

Table 1.  Configuration of parameters  
 

Algorithm Optimal Parameters 
Fast Large Margin C=1000 

 
Decision Tree Maximal depth=4 

 
Random Forest Number of trees=100 

Maximal depth=4 
 

Gradient Boosted Trees Number of trees=30 
Maximal depth=2 

Learning rate=0.001 
 

 
 
For Fast Large Margin, the value of C was set to 1000, which yielded the best accuracy. As 

for Decision Tree, a maximal depth of 4 was found to be the best setting. Random Forest, on the 
other hand, produced the highest accuracy when the number of trees was set to 100 and the maximal 
depth was set to 4. Finally, Gradient Boosted Trees were optimized with a number of trees of 30, 
maximal depth of 2, and learning rate of 0.001. These settings were found to be the most suitable 
for predicting reverse migration based on the dataset used in this study.  Based on the configuration 
in Table 1, the models for developing the regression classification were constructed in RapidMiner 
manually, as depicted in Figure 2.  The same processes were also used for the linear based machine 
learning that replaced the three algorithms with Logistic Regression, Fast Large Margin and 
Generalized Linear Model. 
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Figure 2. Correlation between each IV to DV 

 
 
 
4. Results and Discussion 
 Table 2 list the accuracy and AUC results from the testing dataset. Based on the preliminary 
results, both Logistic Regression and Random Forest models produced 100% accuracy on the 
testing dataset. However, it is highly unlikely to have a perfect model in real-world scenarios, and 
this raises suspicion about the model's validity. Therefore, we excluded these models from further 
analysis to avoid overfitting and to ensure that the selected model is generalizable to new data. 
Instead, we focused on the models that had lower accuracy scores, such as Fast Large Margin, 
Generalized Linear Model, Decision Tree, and Gradient Boosted Trees, as they may have more room 
for improvement and could potentially provide a more realistic and robust model for the problem at 
hand. 
 

Table 2.  Performance results 
 

Algorithm Testing 
accuracy (%) 

AUC of 
migration 
class 

Fast Large Margin 90.5 0.93 
Generalized Linear Model 90.5 0.92 
Decision Tree 92.1 0.50 
Gradient Boosted Trees 92.1 0.96 

 
  
 Refer to Table 2, Fast Large Margin and Generalized Linear Model have achieved good 
accuracy of 90.5%. Additionally, Fast Large Margin has an AUC score of 0.93, while Generalized 
Linear Model has an AUC score of 0.92. As both of these algorithms have AUC scores above 0.5, it 
indicates that they perform better than random guessing. 
 Decision Tree has an accuracy of 92.1%, which is slightly higher than Fast Large Margin and 
Generalized Linear Model. However, Decision Tree AUC score is only 0.5, which is the worst possible 
value. This suggests that Decision Tree may not be the best algorithm for this particular problem. 
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 Gradient Boosted Tree also has an accuracy of 92.1%, which is the same as Decision Tree. 
However, its AUC score is much higher at 0.96, indicating that it is better at classifying between the 
two classes of reverse migration.  Furthermore, Figure 3 and Figure 4 present the tree models of the 
Decision Tree and Gradient Boosted Trees.   
 

 
 

Figure 3. The tree model generated from Decision Tree 
 
 

 
Figure 4. The tree model generated from the Random Forest  

 
  
 Based on the tree models, it was found that the Negeri_Destinasi had the highest feature 
importance for both algorithms. In addition, the type of Industri factor was the second most important 
contributor in the Gradient Boosted Trees.  Further analysis and investigation of these factors could 
provide valuable insights for the reverse migration problem. 
 
 

 
5. Conclusion 

The research found no significant difference in performance between the tested tree-based 
and linear-based machine learning algorithms. This finding suggests that both types of algorithms 
can be useful for similar classification tasks. However, it is important to note that the AUC results 
revealed that the Decision Tree algorithm needs further investigation due to its poor performance in 
this metric. Further research is needed to confirm these findings with larger datasets and more 
diverse classification tasks. Within the scope of this works, these findings suggest that both types of 
algorithms can be useful for similar classification tasks, but careful consideration should be given to 
the selection of the appropriate algorithm based on the specific requirements of the task. 

The benefits of this study include providing insights into the performance of different machine 
learning algorithms for classification tasks. The findings can be used to guide the selection of 
appropriate algorithms for similar classification tasks, potentially saving time and resources. 
Additionally, the study identified the features importance in the machine learning algorithms thus 
Further analysis and investigation of these factors could provide valuable insights for the reverse 
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migration field and help policy-makers and stakeholders to make data-driven decisions to improve 
the effectiveness of their strategies and programs. 
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