UNIVERSITI TEKNOLOGI MARA

UNINTERRUPTIBLE POWER SUPPLY TOPOLOGY USING SINGLE PHASE MATRIX CONVERTER WITH ACTIVE POWER FILTER FUNCTIONALITY

MUHAMMAD SHAWWAL BIN MOHAMAD RAWI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Electrical Engineering)

Faculty of Electrical Engineering

August 2022

ABSTRACT

The demand for availability, stability, reliability, and high-quality power supply has shown an upward increase in recent years. This trend reflects the increased use of uninterruptible power supplies (UPS) to provide an uninterrupted and reliable power supply. This is particularly critical in the data centres, financial institutions, and cloud computing division, where data is the most crucial aspect of computer usage. Data loss due to power failure can contribute to significant economic losses. Invented UPS has been intended to use at least two separate converters to perform rectifier and inverter operations resulting in low power density. Other issues such as high reliability and space constraints remain a severe concern for developing the UPS system for floating offshore oil and gas platforms. While the ever-increasing concern to improve the power density for sustainable electrical energy has encouraged essential efforts to improve the power density of the electrical power converters. Therefore, this thesis aims to develop a new UPS circuit topology that combines rectifier and inverter circuits using a single circuit topology based on the Single-Phase Matrix Converter (SPMC). The safe-commutation strategy has been developed to solve the commutation problem due to the inductive load disturbance in the fundamental investigation. This thesis focuses on the switching integration for rectifier and inverter operation to perform UPS with Power Factor Corrector (PFC). It features low power losses resulting in high power density. The distorted supply current waveform due to the non-linear load is compensated through a proper switching algorithm of SPMC to function as an Active Power Filter (APF). It possesses low harmonic contents with a low Total Harmonics Distortion (THD) level, thus, improving the high-power factor. A step response function investigates the transition between the proposed switching algorithms for rectifier and inverter operations. The rectifier operation represents the normal operation that receives the supply from the grid system. For the power outage condition, the switching algorithms will shift to perform an inverter operation and provide the supply from the standby battery. Finally, the effectiveness of the proposed circuit topology and the proposed switching algorithms for the proposed UPS system are verified through the computer simulation model using MATLAB/Simulink and an experimental test rig. As a result, the supply voltage waveform becomes continuous, sinusoidal and in-phase with the supply current waveform, thus can reduce the Total Harmonic Distortion (THD) level below those defined in the IEEE 519-2014 standard and improving the power factor. The transition time of the UPS system between charging and discharging modes of operation complies with the IEC 62040-3.

ACKNOWLEDGEMENT

First and foremost, I want to say Alhamdulillah and be grateful to God for giving me so much strength to sustain in finishing this project to the end. I take this opportunity to express my gratitude and deep regards to my main supervisor, Ir. Ts. Dr. Rahimi Baharom and Dr Khairul Safuan Muhammad for being very supportive, always carrying through this project management and exemplary guidance that guide me one by one till the very end. With the help of him, I am able to understand and gain extensive knowledge and experience regarding the project.

Additionally, a special to my sponsor Jabatan Perkhidmatan Awam (JPA) gives full support in financing during the study. Also, thanks to my friends that always being supportive and helpful in finding the solutions to my difficulties while handling this project. They always advise me and share the knowledge they know without feeling burdened. Not to forget to all the laboratory staff for helping to provide the equipment needed during this research. Finally, I wish to thank the Department of Electrical Engineering of Universiti Teknologi Mara for allowing me to learn and grow the experience for future use.

TABLE OF CONTENTS

CON	ii	
AUT	iii	
ABS	iv	
ACŀ	v	
TAB	vi	
LIST	xi	
LIST	xii	
LIST	XX	
LIST	Γ OF ABBREVIATIONS	xxii
CHA	APTER ONE INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	4
1.3	Research Objectives	5
1.4	Scope and Limitation of Study	5
1.5	Significance of Study	6

CHAH	TER TWO A REVIEW ON POWER ELECTRONIC	CONVERTERS			
INCL	8				
2.1	Introduction	8			
2.2	Background				
2.3	Power Electronic Converters	9			
	2.3.1 AD-DC Converter	9			
	2.3.2 AC-AC Converter	10			
	2.3.3 DC-DC Converter	10			
	2.3.4 DC-AC Converter	12			
2.4	Matrix Converter	13			
	2.4.1 Three-Phase Matrix Converter	14			

	2.4.2	Single-Phase Matrix Converter	14
	2.4.3	Switch Cell Topologies for Matrix Converter.	15
	2.4.4	Fully Controllable Bidirectional Switch Configurations	16
	2.4.5	Commutation Problems	18
	2.4.6	Safe-Commutation Strategies	18
	2.4.7	Control Method for Matrix Converter	19
2.5	Power Electronic Devices		
	2.5.1	Diode	20
	2.5.2	Thyristor	21
	2.5.3	Bipolar Power Transistor	22
	2.5.4	Metal Oxide Semiconductor Field-Effect Transistor	23
	2.5.5	Insulated Gate Bipolar Transistor	24
2.6	Switch	n Cell	24
	2.6.1	Unidirectional Switch Configuration	25
2.7	Rectif	ier	25
	2.7.1	Uncontrolled Rectifier	25
	2.7.2	Controlled Rectifier	27
2.8	Inverter		28
	2.8.1	Uncontrolled Inverter	28
	2.8.2	Controlled Inverter	28
2.9	Boost Topology		
2.10	Uninterruptible Power Supply (UPS)		29
	2.10.1	Line-Interactive topology of UPS	30
	2.10.2	Online Double Conversion	30
	2.10.3	Offline (Standby)	31
2.11	Contro	ol Technique	32
	2.11.1	Pulse Width Modulation	32
	2.11.2	Sinusoidal Pulse Width Modulation	33
	2.11.3	Active Pulse Width Modulation	34
2.12	Contro	ol Electronic	35
	2.12.1	Open-Loop Control	35
	2.12.2	Closed-Loop Control	35
2.13	Power	Quality Problem	36
	2.13.1	Harmonic	37