UNIVERSITI TEKNOLOGI MARA

ELECTRICAL CONDUCTIVITY, DIELECTRIC AND ELASTIC PROPERTIES OF MIXED IONIC– ELECTRONIC Na₂O–CaO–B₂O₃–V₂O₅ GLASSES AND THE EFFECT OF Er³⁺ DOPING ON ITS OPTICAL PROPERTIES

SYAFAWATI NADIAH BINTI MOHAMED

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy Science**

Faculty of Applied Sciences

July 2022

ABSTRACT

A phenomenon known as the mixed ionic-electronic (MIE) effect has drawn much attention due to the simultaneous presence of alkali oxide and transition metal oxide together in glassy network which caused anomalous behavior of physical properties of oxide glass through some form of largely unclear mechanism. In this study, glasses with compositions $20Na_2O-20CaO-(60 - x)B_2O_3-xV_2O_5$ (x = 0 - 2.5 mol%), $20Na_2O 20CaO - (59 - x)B_2O_3 - xV_2O_5 - 1Er_2O_3$ (x = 0 - 2.5 mol%) and $20Na_2O - 20CaO - (58.5 - 20CaO) - (58.5 - 20CaO)$ y)B₂O₃-1.5V₂O₅-yEr₂O₃ (y = 0 - 3.0 mol%) were prepared using conventional meltquenching technique. The MIE $20Na_2O-20CaO-(60 - x)B_2O_3-xV_2O_5$ glasses were investigated to determine their electrical conductivity, dielectric, elastic and optical properties and to elucidate the physical nature of the MIE effect. Both DC (σ_{dc}) and AC (σ_{ac}) conductivities in the glass system decrease with V₂O₅ content to a conductivity minimum at x = 1.5 mol% before increasing for x > 1.5 mol%. The decrease in both conductivities is attributed to some form of ionic blocking caused by the MIE effect, which is related to the role of V₂O₅ in the glass network. Meanwhile, the dielectric constant (ε') for x = 1.5 mol% was enhanced at $0.1 \le f \le 10$ Hz, which coincided with conductivity minima at the same V_2O_5 concentration, and this is also suggested to be due to the MIE effect. In the same region, elastic moduli, hardness, and Debye temperature also decreased to a minimum at x = 1.5 mol%, indicating a possible influence of the MIE effect on the elastic anomaly. Furthermore, the optical band gap (E_{opt}) and refractive index (n) exhibited minimum and maximum values, respectively, at x = 1.5 mol%. The increase in the concentration of non-bridging oxygen (NBO) is suggested to be the reason for significant changes in the optical properties of the glasses. In addition, two series of Erbium-doped glasses having compositions of 20Na₂O- $20CaO - (59 - x)B_2O_3 - xV_2O_5 - 1Er_2O_3$ (Series A) and $20Na_2O - 20CaO - (58.5 - y)B_2O_3 - xV_2O_5 - 1Er_2O_3$ $1.5V_2O_5-yEr_2O_3$ (Series B) were investigated to study the effect of Er^{3+} and V^{4+} ions on absorption, emission and energy transfer of the MIE glasses. The absorption spectra of both glass series exhibited 10 significant bands, which corresponded to the *f*-*f* transition of Er^{3+} ions with an additional weak absorption band attributed to V^{4+} energy transition. The up-conversion PL spectra for the glasses under 779 nm excitation displayed 3 emissions bands centered at 518, 556 and 647 nm due to the emission from the energy levels of Er^{3+} . The enhanced emission at 647 nm (red region) that corresponded to the ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ of the Er³⁺ transition for all glasses was suggested due to energy transfer from V^{4+} to Er^{3+} ions. For Series A, the variation of oscillator strength (f_{exp}) and Judd– Ofelt parameters ($\Omega_{2,4,6}$) showed an almost similar trend, which exhibits a maximum at $x = 0.5 \text{ mol}\% \text{ V}_2\text{O}_5$. PL intensity was highest for sample x = 0.5 mol% but abruptly drops to the minimum at x = 1.5 mol%. The decrease in PL was possibly influenced by the MIE effect. Meanwhile, for Series B, a general decrease was observed in f_{exp} and Judd–Ofelt parameters except for Ω_6 upon Er₂O₃ addition. The PL intensity increased and reached a maximum at y = 2.0 mol% before subsequently decreasing with further addition of Er_2O_3 (y = 3.0 mol%) due to concentration quenching. The knowledge gained from these studies may provide useful information towards the development of novel conducting borate glasses for various electro-optical applications.

ACKNOWLEDGEMENT

First and foremost, praise is to ALLAH, the Almighty for giving me the opportunity and health to embark on my Ph.D. and for completing this challenging journey. This journey would not have been possible without the support and advice of many people.

I would like to express my deepest appreciation and sincere gratitude to my supervisor, Prof. Dr. Ab. Malik Marwan Ali for his willingness to accept me as a student under his supervision at the end of my journey. I am very grateful for his kindness, support and precious time towards me.

My warm regards to my respected former supervisor Prof. Dr. Ahmad Kamal Hayati Yahya. His wisdom, dedication, knowledge and valuable opinion throughout fruitful discussions contribute greatly to the completion of this project. I would always appreciate all of his contributions of time, ideas and patience. Also, I am truly thankful for the opportunities he had provided me and I have learned a lot.

My grateful appreciation goes to all my co-supervisors, Prof. Dr. Ri Hanum Yahaya Subban, Prof. Dr. Halimah Mohamed Kamari (UPM) and Dr. Ezza Syuhada Sazali (UTM) for countless suggestions and for providing necessary laboratory facilities as well as assistance in carrying out the present project.

I feel pleasure in extending my thanks to my colleagues and friends for sharing their ideas and motivation throughout this project. I also thank all the laboratory staff for their help and cooperation. The financial support provided by the Universiti Teknologi Mara (UiTM) and the Ministry of Higher Education through staff scholarship and research grants is also gratefully acknowledged and appreciated.

Finally, this thesis is dedicated to my beloved parents and siblings. Without their endless prayers, unconditional love and encouragement, it might be impossible for me to achieve my success. Special thanks to my husband and children who have always enriched my life with their patience, sacrifice and constant support behind me at every stage of my personal and academic life, which became my true source of strength and enthusiasm. I love you all.

Alhamdulillah and thank you.

TABLE OF CONTENTS

Page

CON	ii		
AUT	iii		
ABS	iv		
ACK	v		
TAB	vi		
LIST	xii		
LIST	COF FI	GURES	xiv
LIST	r of sy	MBOLS	xxiii
LIST	xxix		
СНА	APTER (ONE INTRODUCTION	
1.1	Resea	rch Background	1
1.2	Proble	5	
1.3	Objec	10	
1.4	Signif	11	
СНА	PTER 7	TWO LITERATURE REVIEW	
2.1	Introd	13	
	2.1.1	Glass Formation Theory	14
	2.1.2	Component of Oxide Glasses	15
2.2	Borate Glasses		17
	2.2.1	Structure of Borate Glass	18

	2.2.2	Modification on Structure of Borate Glasses	18
2.3	Mixed	I Ionic–Electronic Oxide (MIE) Glasses	21
	2.3.1	MIE Effect Unique Properties	23
	2.3.2	Advantage and Application of MIE Oxide Glasses	24
2.4	Electr	ical Conductivity of Oxide Glasses	24
	2.4.1	AC Conductivity	25
	2.4.2	AC Conductivity Transport Mechanism	26
	2.4.3	Complex Impedance Plot and Basic Equivalent Circuit	30
2.5	Dielectric Properties of Oxide Glasses		
	2.5.1	Dipoles and Polarization	34
	2.5.2	Dielectric Polarization Mechanisms	36
	2.5.3	Frequency Dependent Dielectric Properties	38
	2.5.4	Review of V_2O_5 Addition on Dielectric Properties of Oxide	
		Glasses	40
2.6	Elastic	c Properties of Oxide Glasses	41
	2.6.1	Elasticity and Related Parameters	42
	2.6.2	Bulk Compression Model	45
	2.6.3	Ring Deformation Model	46
	2.6.4	Review of Modifier / V_2O_5 Addition on Elastic Properties of Oxide	
		Glasses	47
2.7	Optica	al Properties of Oxide Glasses	50
	2.7.1	Optical Band Gap Energy	50
	2.7.2	Urbach Energy	51
	2.7.3	Review of V_2O_5 Addition on Optical Properties of Oxide Glasses	52
2.8	Rare-e	earth Doped Oxide Glasses	53