PROPERTIES OF PARTICLEBOARD MADE FROM OIL PALM FROND USING DIFFERENT RESIN CONTENT AND BOARD DENSITY

AHMAD NAQI BIN RAZALI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Bachelor Degree of Science (Hons.) in Furniture Technology Faculty of Applied Science Universiti Teknologi MARA

JULY 2014

ACKNOWLEDGEMENT

Alhamdulillah. I would like to express my sincere appreciations to my supervisor, Puan Nurrohana bt Ahmad whom I considered as the backbone of this final year project. With her valuable helps and assistances the project is able to be completed timely. Thank you, Madam.

My appreciations also goes to Assc. Prof. Dr. Wan Mohd Nazri Wan Abd Rahman, who acts as a "prime-mover" to all of us, with his continuously reminding students on the tight schedule and getting himself down to the field to check on our progress. Thank you Dr Wan.

I also wish to thank for the assistances provided by my friends especially my groupmate, Siti Sarah Mohd Ghani and Mohamad Kamal Kamarudin. Good luck in your future endeavours. I also would like to acknowledge the assistances provided by one of the staffs of UiTM, En Shahril Ezanie who has been very supportive in leading the way to handle the machines and I would like to describe him as my second supervisor with regard to his commitment and time.

Last but not least, I would like to thanks my family members especially my parents, Razali bin Ahmed and Norleza bt Zainal Sepri, also my sister Nurul Lidya binti Razali for their endless supports and assistances, that I have been enabled to reaches to this level of study, by attaining the bachelor's degree programme successfully. InsyaAllah. Thank you, everyone.

PROPERTIES OF PARTICLEBOARD MADE FROM OIL PALM FROND USING DIFFERENT RESIN CONTENT AND BOARD DENSITY

By AHMAD NAQI BIN RAZALI

JULY 2014

ABSTRACT

The national oil palm industry is producing millions of ton of biomass every year. These biomass products need to be managed properly for a better economic and technology development in this country. Oil palm frond biomass can act as an alternative source for wood-based industry. This research was made to determine about the mechanical and physical properties of particleboard made from oil palm frond (OPF) by using different resin content and board density. The tests on the mechanical properties include bending (MOE and MOR) and internal bonding. Meanwhile for the physical properties the tests are thickness swelling and water absorption. Based on the tests, higher density board and resin content seem to give better result in mechanical properties and physical properties. Boards with 700kg/m³ density and 12% of resin content achieved the minimum requirement based on the JIS A5908 standard.

TABLE OF CONTENTS

	Page
APPROVAL SHEET	ii
CANDIDATE'S DECLARATION	iii
ACKNOWLEDMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENS	vii
LIST OF TABLE	ix
LIST OF FIGURES	Х
LIST OF ABBREVIATIONS	xi

CHAPTER 1 :INTRODUCTION

1.1 Background	1
1.2 Problem Statements	4
1.3 Justification	5
1.4 Objectives	6

CHAPTER 2 :LITERATURE REVIEW

2.1	Panel Product Industry (Global)	7
2.2	National Particleboard Industry	9
2.3	Particleboard Production	10
2.4	About Oil Palm	11
2.5	Oil Palm Biomass	13
2.6	Resin and Adhesive	16

CHAPTER 3 :MATERIALS AND METHOD

3.1 Process of Oil Palm Frond particleboard	18
3.2 Material Source	19
3.3 Raw Material Preparation	19
3.3.1 Screening	19
3.3.2 Drying	19
3.4 Board Making	20
3.4.1 Pressing	20
3.4.2 Trimming and Cutting	20
3.4.3 Board Evaluation	21
3.5 Testing Method	22
3.5.1 Physical testing	22
3.5.1.1 Thickness swelling and water absorption test	22
3.5.2 Mechanical testing	23
3.5.2.1 Bending strength testing	23
3.5.2.2 Internal bonding testing	24

CHAPTER 4 : RESULTS AND DISCUSSIONS	
4.1 Statistical Significance	25
4.2 Effects of resin contents	26
4.2.1 Modulus of rupture (MOR)	26
4.2.2 Modulus of elasticity (MOE)	27
4.2.3 Internal bonding (IB)	28
4.2.4 Thickness swelling (TS)	29
4.2.5 Water absorption (WA)	30
4.3 Effects of materials	32
4.4.1 Modulus of rupture (MOR)	32
4.4.2 Modulus of elasticty (MOE)	34
4.4.3 Internal bonding (IB)	35
4.4.4 Thickness swelling (TS)	36
4.4.5 Water absorption (WA)	37
CHAPTER 5 : CONCLUSIONS AND	38
RECOMMENDATIONS	
REFERENCES	40
APPENDICES	43
VITAE	59