PROPERTIES OF RICE HUSK PARTICLEBOARD FOR EXTERIOR USE

NUR LIYANA AIFA MAHAMMAD ASRI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2013

ACKNOWLEDGEMENTS

Alhamdulillah, I am very thankful to our great Allah almighty who blesses us with different types of skills which is needed by us in order to complete this final year project. This project had been done with all my effort. Although there had been a little problem while doing this project but I am still able to finish this project on time. I am also very grateful to my advisor, Prof. Dr. Suhaimi Muhammed who has encouraged, teach and guide me until to the end of this project. Without his encouragement and guidance I might had been difficult to complete this final year project. Other than that, I would like to express special thanks to all lecturers and staffs of Wood Industry Department as follows; Prof. Dr. Jamaluddin Kasim, Assoc. Prof. Dr. Wan Mohd Nazri, Pn. Junaiza, En. Rudaini, En. Shahril Izani and En. Muslim, are helping me in completing this project. Here also, I would like to thank Dr. Nor Yuziah Mohd. Yunus from Malayan Adhesive and Chemical (MAC) Sdn. Bhd. because willingly to supply the synthetic adhesive, Phenol Formaldehyde (PF) that were used in this project. Finally, big thank to my beloved friends and family who also encourage, helping and support me to complete this final year project.

Nur Liyana Aifa Mahammad Asri

TABLE OF CONTENTS

APPROVAL SHEET	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATES	viii
LIST OF ABREVATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problems statement	3
1.3	Justification	4
1.4	Significance of study	4
1.5	Objectives	5

CHAPTER 2 LITERATURE REVIEW

2.1	Rice husk		
2.2	Chemi	ical composition of rice husk	7
2.3	Recon	stituted panel from rice husk	8
2.4	Potential of rice husk in panel product manufacturing		
2.5	Particl	eboard	10
	2.5.1	Definition	10
	2.5.2	Manufacturing process	11
	2.5.3	Properties of particleboard	12
	2.5.4	Uses of particleboard	13
2.6	Particl	e size	14
	2.6.1	Effect of particle size	14
	2.6.2	Effect of particle size on mechanical properties	14
	2.6.3	Effect of particle size on physical properties	15
2.7	Resin		15
	2.7.1	Types of resin	15
	2.7.2	Effect of resin content	17
	2.7.3	Effect of resin content on mechanical properties	17

	2.7.4	Effect of resin content on physical properties	18		
CH	APTER	3 MATERIALS AND METHODS			
3.1	Rawr	naterials	19		
3.2	Prepa	ration of raw material	19		
	3.2.1	Flaking	20		
	3.2.2	Screening	21		
3.3	Comp	osite preparation process	22		
	3.3.1	Drying	23		
	3.3.2	Blending	24		
	3.3.3	Mat forming	25		
	3.3.4	Pre-pressing	25		
	3.3.5	Hot pressing	26		
	3.3.6	Conditioning	27		
	3.3.7	Trimming and cutting	27		
3.4	Panel	testing	29		
3.4.	1 Me	chanical property	29		
3.4	4.2 Pł	nysical property	33		
3.5	Exper	imental design	36		
3.6	Data a	analysis	36		
CH	APTER	4 RESULTS AND DISCUSSIONS			
4.1	Mech	anical and physical properties	37		
4.2	Statist	tical significance	38		
4.3	Effect	of particle size on mechanical properties	39		
4.4	Effect	of particle size on physical properties	41		
4.5	Effect	of resin content on mechanical properties	42		
4.6	Effect	of resin content on physical properties	43		
CH	APTER	5 CONCLUSIONS AND RECOMMENDATIONS			
5.1	Concl	usions	45		
5.2	Recor	nmendations	46		
REI	TEREN	CES	47		
APPENDICES					
CUI	CURRICULUM VITAE				
			02		

ABSTRACT

The composite panel from rice husk were manufactured with different particle size (1.0 mm and 0.5 mm) and different resin content (7% and 9%) of Phenol Formaldehyde (PF). The objectives of this study to determine the mechanical properties (MOR, MOE and IB) and physical properties (TS and WA) of rice husk particleboard. This study also wanted to evaluate whether rice husk particleboard is suitable for exterior use. The mechanical and physical tests were performed according to European Standard (EN 310, EN 317 and EN 319). Based on the testing, the particle size of 1.0 mm have highest MOR and MOE value, while particle size of 0.5 mm gave the highest IB value. The smaller particle size gave better performance on physical properties. There were significant different in bending properties (MOR, MOE and IB) and TS and WA properties as the particle size increased from 0.5 mm to 1.0 mm. The value of bending strength and IB strength increased with higher resin content. While, TS and WA increased significantly with lower resin content. However, only TS for board of 0.5 mm particle size with 9% resin content satisfied the minimum requirements, while the other properties did not satisfy the standard.