DENDROCALAMUS ASPER (BULUH BETONG) AS RAW MATERIAL TO MANUFACTURE WOOD PLASTIC COMPOSITE (WPC)

NUR FARHANA BINTI MOHD ZAILANI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2013

ACKNOWLEDGEMENTS

Alhamdulillah... All praise be to ALLAH for giving me the strength and patience to finish this thesis, without the blessing from ALLAH it is impossible to me to finish this project. So, thank you ALLAH. Also I would like to express my gratitude and sincere thanks to my beloved advisor Madam Siti Zalifah Bt Mahmud for her advice, guidance and encouragement that have helped me a lot to complete this thesis. She has sacrificed a lot of her time to spend with me in discussing this thesis.

A million thanks go to Prof. Dr. Jamaludin Bin Kasim my co-advisor and the Head of Furniture Technology Programme for his thoughts and guiding me in writing this thesis. He has guided me from the basics to the detail of writing thesis. Special thanks also go to Miss Mufidah Bt Husin for helping me and being my reference during the absence of my advisor. She did her best to be my guidance, thank you Miss Mufidah.

Besides that, lots of thanks to the entire workshop's staff for their commitment in helping me to complete this thesis especially Mr. Rudaini and Mr. Shahril who have helped me handling the machinery in the workshop. Also to all my friends who helped me to complete this thesis, thank you from the bottom of my heart.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii-iv
LIST OF TABLES	V
LIST OF FIGURES	vi-vii
LIST OF PLATES	V111
LIST OF ABBREVIATIONS	1X
ABSTRACT	x
ABSTRAK	AI

CHAPTER 1 INTRODUCTION

1.1	Background	1-2
1.2	Problem Statements	3
1.3	Justification	4
1.4	Significance of study	5
1.5	Limitation of study	5
1.6	Objectives	6

CHAPTER 2 LITERATURE REVIEW

2.1	Bambo	00	/-8
	2.1.1	Chemical composition of bamboo	8-9
22	Dendr	ocalamus asper	10
23	Comp	osition of wood plastic composite	11-21
Lord t w	231	Thermoplastics resin	11
	232	Polypropylene	12-14
	233	Additives	15-16
	234	Maleic Anhydride Grafted Polypropylene (MAPP)	16-19
	235	Particle size	19-21
	dant 6	· · · · · · · · · · · · · · · · · · ·	

Wood	plastic composite industry	21-22
2.4.1	Definition of wood plastic composite	22-23
2.4.2	Malaysian scenario of wood plastic composite	23-25
2.4.3	WPC manufacturing process	25-26
2.4.4	Properties of WPC	27-28
2.4.5	Uses of WPC	28-29
	Wood 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5	 Wood plastic composite industry

CHAPTER 3 METHODOLOGY

3.1	Source of raw material	30
3.2	Sawdust preparation	31-34
3.3	Manufacturing process of wood plastic composite	35
	3.3.1 Blending in Dispersion Mixture	36
	3.3.2 Crusher	36-37
	3.3.3 Moulding	37
	3.3.4 Hot Press	37
	3.3.5 Cold Press	38
	3.3.6 Cutting and trimming	38-41
3.4	Testing method	42
	3.4.1 Bending test	42-43
	3.4.2 Tensile test	43
	3.4.3 Impact test	43-44
	3.4.4 Thickness swelling	44
	3.4.5 Water absorption	45
3.5	Statistical Package for the Social Sciences (SPSS)	46
3.6	Analysis of Variance (ANOVA)	47
3.7	Hypothesis Testing	47

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	48
4.2.	Bulk Density	48-49
4.3	Mechanical and physical properties of wood plastic	
	composite board from <i>D. asper</i>	50-51
4.4	Statistical significance	52

ABSTRACT

Bamboo has been recognized as the second importance non- timber forest product by Malaysian Government. It can be a good substitute for timber in producing high value added products. For this reason, this study used *Dendrocalamus asper* as raw material to manufacture wood plastic composite. This study focused on the effect of particle size and the effect of Maleic Anhydride Grafted Polypropylene (MAPP) additive on physical and mechanical properties of wood plastic composite filled with 10 percent of *Dendrocalamus asper* sawdust. Three different particle size was been used which were 150µm, 180µm and 425µm in size. Particle size showed a significant influenced on physical and mechanical properties of the wood plastic composite board while the addition of 3 percent MAPP enhanced the physical properties and almost overall mechanical properties of wood plastic composite for the wood plastic composite for the addition of 3 percent MAPP enhanced the physical properties and almost overall mechanical properties of wood plastic composite for the wood plastic properties and almost overall mechanical properties of wood plastic composite board while the addition of 3 percent MAPP enhanced the physical properties and almost overall mechanical properties of wood plastic composite