

International Journal of

Practices in Teaching and Learning

(IJPTL)

36

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

Published: August 2022

STeM: A Web-Based System for Managing Test

Artifacts in Software Testing Course

Abstract— With the increasing demand for sophisticated and

cost-effective software testing, many software industries are

looking for highly skilled software testers. To meet that demand,

many universities have offered software testing courses in their

software engineering programmes. At the Faculty of Computer

and Mathematical Sciences Universiti Teknologi MARA, a

software testing course was offered to Bachelor of Information

System Engineering students in semester 5. As part of the course

assessment, students are required to conduct system tests in which

they need to design, execute, and document test cases. Currently,

the use of Microsoft Word and Excel Spreadsheet to document

test cases and test results are not effective for test case

management. The most common problems experienced by the

students when using Microsoft Word to manage test cases are: 1)

difficulty to ensure document consistency when various team

members update the test artifacts, 2) unable to track and monitor

the test status when the test results are kept individually, and 3)

improper test-requirements traceability, since separate

traceability documents need to be maintained and updated

throughout the development life cycle. This paper reports on the

development of STeM web-based system to assist the test case

management in a software testing course. The STeM serves as a

collaborative platform for the students to build test cases, create

requirements traceability, record test cases results, monitor test

case status, and produce test reports. In addition, the lecturer can

monitor the test progress through this system too.

Keywords—software engineering programme, software testing

course, test case management

I. INTRODUCTION

Software testing is imperative in ensuring the quality of

software products. According to report from Cambridge

University, the global cost of finding and fixing software

systems has risen to $312 billion annually, and this cost

constitutes about half of the development costs of a typical

software project. With the increasing complexity of

software products, the software industry needs highly-

skilled software testers. To meet this industrial demand,

many universities have offered software testing courses in

their software engineering or computer science

programmes.

At the Faculty of Computer and Mathematical Sciences,

Universiti Teknologi MARA, the software testing course is

offered to students of Bachelor in Information System

Engineering. The students enroll into this course in

semester 5 after passing System Requirement and Analysis,

and System Design and Implementation courses in

semester 3 and 4, respectively. There are five types of test

activities covered in the software testing course syllabus: 1)

identify test conditions/scenarios, 2) design test cases, 3)

build test cases, 4) execute test cases, and 5) compare the

test outcomes. These five activities are assessed in group

assignments, where the students are required to conduct

system tests on software projects. Through this testing

assignment, students get hands-on experience in preparing

system tests, particularly in designing test cases, executing

test cases, and documenting test artifacts. Currently, all the

test artifacts such as test cases, test results, and defect

reports are written in Microsoft Word and Excel

spreadsheet. Since these artifacts are stored separately by

each student, matters related to document consistency,

transparency, tracking of test progress, and traceability

between test cases and requirements become a challenge.

In software project development, it is common for people

involved in the project to want to know about the testing

progress and status – when will the testing be completed?

How many test cases have been executed? How many test

cases have failed? What is the testing progress? However,

in the absence of a centralized repository to store all these

test data or metrics, it is difficult to answer such questions.

To enhance the university teaching and learning in software

testing, we have developed a web-based test management

system as an alternative platform for students to create,

Nor Shahida Mohamad Yusop

Universiti Teknologi MARA

Cawangan Selangor

40450 Shah Alam, Selangor, Malaysia

nor_shahida@uitm.edu.my

Adib Suhaimi Mohd Fikri

Universiti Teknologi MARA

 Cawangan Selangor

40450 Shah Alam, Selangor, Malaysia

Nursyuhaila Yahaya

Universiti Teknologi MARA

Cawangan Selangor

40450 Shah Alam, Selangor, Malaysia

syuhailayahaya@gmail.com

37

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

manage, track, and monitor test activities. According to

Parveen et al. (2007), test management is critical to

enabling test assets and artifacts such as test requirements,

test cases, and test results are accessible and reused. In

addition to providing access to test documentation,

Burnstein (2006) suggested to include testing status

features in the test management system to monitor work

efforts, test schedule, and monitor test progress. According

to IEEE Standard 829-2008, good test case management

also should consider various aspects of the testing process

that include preparation of test execution, monitoring the

execution, reporting test progress, assessing test results,

and analysis of anomalies. Although many open source test

management tools such as JIRA, GitHub, and TestRail are

available for the students to manage the test activities, most

of these tools are limited and not suitable to be used in

educational project settings. In our software testing course,

for example, the test management elements only focus on

the management of requirements, test cases, and test results

that were produced during the system test. However, our

review on existing open source test management tools

found that most of the features offered are too advanced to

be used by novice users and not suitable for learning

purposes. Therefore, the need to develop a customized test

management tool for learning purposes is very much

needed to improve the test process.

The rest of this paper is organized as follows. Section 2

introduces the learning activities in the software testing

course offered at UiTM. Section 3 gives an overview of

related work. Section 4 presents the development process

of STeM. Section 5 reports the user feedback of STeM.

Finally, Section 6 concludes the paper and suggests future

work.

II. LEARNING ACTIVITIES IN SOFTWARE TESTING

COURSE

This section introduces learning activities conducted

during a software testing course at the Faculty of Computer

and Mathematical Sciences, UiTM. Students register for

the software testing course in the fifth semester after

passing System Requirement and Analysis and System

Design and Implementation courses in the third and fourth

semester, respectively. It is a 3-credit hour course with 28-

hours of class lectures and 28-hours of lab sessions

conducted in a 14-week semester. In addition to learning

the theoretical software testing foundations, students are

also exposed to practical testing activities by conducting

system test on a project developed in the previous semester.

A. Learning Activities

To expose students with real-world testing experience,

students are required to conduct the system test on a

software that was developed by them during the Design and

Implementation Course. Students worked in groups of six

to eight based on their personal choices. They are required

to carry out the five test activities below:

1. Identify test conditions – Test condition is an item

or event that could be verified by a test. Before

designing a test case, students are required to

determine what can be tested and prioritize these

test conditions. For this activity, students need to 1)

identify a list of positive and negative test

conditions, and 2) compile these test conditions in a

Google Sheet so that everyone can update in one

document.

2. Design test cases – Test case design determines how

the test conditions will be tested. A test case is a set

of tests performed in a sequence and related to a test

objective. During the test case design, students will

have to identify 1) specific input values, 2) expected

outcomes, and 3) environment prerequisites. This

information is recorded in the same Google Sheet

where the test conditions are stored.

3. Build test cases – During this activity, the Software

Test Description is prepared. Students are required

to document 1) test case ID, 2) test case name, 3)

description of the test cases, 4) test procedure, 5)

pre-and post-conditions of the test, 6) test input, and

7) expected outcome. This information is written in

Microsoft Word document.

4. Execute test cases – The system test is focused on

manual checking of the software under test by

following the test procedures in the test case. The

student-tester needs to 1) enter inputs, 2) observe

outcomes, and 3) make notes about any problems as

they proceed.

5. Compare test case – The actual outcomes of each

test case must be compared and investigated if the

software being tested worked as expected. Each

student-tester will record the following information

in Excel Spreadsheet: 1) test results either pass or

fail, 2) remarks on why certain test cases failed, and

3) submit defect reports or some input on further

enhancement if the test case failed. At the end of

the testing phase, all the test results are compiled

and reported in the Software Test Report.

B. Test Artifacts

Test artifacts are test deliverables or documents that are

created when the testing is being carried out. The test

artifacts are required by the team members and the

stakeholders to know about the progress in the project. In

the real software testing environment, test artifacts consist

of test strategy, test plan, test case, test data, requirement

traceability matrix, test coverage, defect report, and test

summary report. In our software testing course, we only

focused on four artifacts, which are test case, requirement

traceability matrix, defect report, and test summary report.

These artifacts are documented in the following

documents:

1. Software Test Description (STD): The STD

document describes the test preparation, test cases,

38

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

and test procedures to be used during the system

testing. Besides that, a requirement traceability

matrix is also presented in the STD to illustrate the

relationship between requirements, design, and test

case. However, manual traceability matrices using

Microsoft Word are vulnerable because when any

element of traceability data is modified, the affected

relationships must be updated manually.

2. Software Test Report: The STR document

summarizes the testing activities and tests results

after testing is completed. Currently, an individual

student-tester will record the test execution results

in their local Excel Spreadsheet. This process,

however, is impractical where team members are

unable to track the testing status, and lecturers could

not monitor the testing progress.

3. Defect Report: Defect report is a document that

describes a defect found by a tester when

conducting a system test. The purpose of a defect

report is to state the problem as clearly as possible

so that developers can reproduce the problem,

debug, and fix it. Currently, any problems found

during system testing are recorded in Microsoft

Word or Excel Spreadsheet.

III. RELATED WORK

A. Software Testing in University Education

Many software industries have reported that software

systems are becoming increasingly complex, however,

there is a shortage in recruiting “quality” software testers.

To address this workforce shortage, many universities have

offered software testing courses in their software

engineering programmes. However, some research has

reported that undergraduate computing courses do not

provide students with an integrated view of software test

contents compared to other undergraduate courses in

general. Instead, students view software testing as a

fundamental course for learning how to use testing tools,

rather than acquiring test design skills (Garousi, 2011). In

fact, Scatalon et al. (2019) have reported that there are still

complaints about the teaching of software testing in

education because the focus is on theory and there is a lack

of practice to show students how to apply the concepts.

Software testing education is not a “one-size-fits-all”

approach (Barr et al., 2020; Elgrably & Ronaldo Bezerra

Oliveira, 2020). In different universities, although different

pedagogical approaches were introduced, the software

testing curricula generally consist of theoretical and

practical elements. For example, many universities have

started using a real-world project in their software testing

curricula. Through project-based learning, students are

exposed to a wide variety of test activities and techniques

and are able to experience real-world testing practices. At

Anhui SanLian University, China, android-based testing

was introduced for students to test a lightweight

autonomous learning system (Yu, 2019). Meanwhile, at

Guangzhou University, to improve software testing

capabilities, software testing educators use public and

private cloud platforms to run software test experiments

(Wen et al., 2019). From the review of software testing

education (Garousi et al., 2020), the most frequent included

test activities in software testing courses were test case

design and test execution. Limited exposure is given on test

process, planning and management. Other than classroom

teaching, and project-based learning, at certain universities,

software testing training is given to students as part of the

education curricula. However, not many universities

provide this opportunity. In Hong Kong, for example, only

a small percentage of students had completed formal

software testing training as part of their university

education (Chan et al., 2005)

Other than having a dedicated course on software testing,
testing was also taught as part of a regular programming
course. In Computer Science courses, for instance, Junit
testing frameworks were used to write and execute unit
tests in Java programming language (Bai & Stolee, 2020).
This can help students to write better code and detect errors
faster.

B. Test Case Management Tool

Test management process consists of activities to organize,

control, track, and monitor test artifacts throughout the

whole software testing cycle. While there are many open

source test case management tools available to support

these activities, most of the tools are limited to be used in

educational environments. Due to time constraints, test

management activities in the software testing course

typically focused on organizing test design, tracking test

progress, and creating traceability between requirements

and test cases.

In previous research, not many studies have explored the

practical use of test case management tools in software

testing courses. The closest to our study can be found in a

study carried out by Safana and Ibrahim (2010). In this

study, the authors compared the strengths and weaknesses

of several test management tools to select the most suitable

tool to manage the tests of an educational-project called

OBA. They have chosen the SpiraTeam tool over Quality

Center, Rational Test Manager, SilkCentral Test Manager,

and Wip-CAFÉ TMS tool. The reasons for selecting the

SpiraTeam over others include its ability to support

requirement management, test case management, release

planning, iteration planning, incidence tracking, and

artifact relationships.

In industrial research, many studies have focused on the

development of effective test management tools for certain

types of projects. For example, Eldh et al. (2010) developed

an automated test management tool to support large and

complex intensive systems with continuous builds.

Compared to standard test management tools, this newly

developed tool is capable to create test cases based on test

specifications and system components, automate test

scheduling, automate test execution process, and auto

39

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

generate test suite. Herramhoff et al. (2006) developed two

tools to support accessibility testing in creating test suites

and store test execution. Parsifal is a test case editor

developed as a desktop application to allow editing of test

description files, while Amfortas is a web application used

to store evaluation results. Jinil et al. (2019), have

customized the Cradle® tool to support systematic

management and association of information from system

requirements, test cases, test events, and test results. In this

research, the author identified items to be managed, the

attributes of each item, and the relationship between them.

IV. DEVELOPMENT OF STEM

Software testing is important in verifying the system

requirements. According to (Kim et al., 2019), the

information of test management activities should be

systematically managed, especially the interrelation

between system requirement, test cases, and test results. A

good system requirement should be tested by at least one

test case, and the test status of each test case should be

recorded. In addition, during the test execution defects may

be found, and these defects must be linked to the related

test case. Currently, the use of word processors and

spreadsheets to record and manage the requirements, test

cases, test results, and defect reports are not effective to

query certain test metrics and monitor test progress. In fact,

the traceability between requirements and test cases are

difficult to track.

STeM is a web-based test management tool to record

requirements, test cases, and test results. In addition, the

users can monitor the progress of test execution and the

success and failure rate of the test. In a software testing

learning environment, the STeM tool enables lecturers to

review test cases development, monitor the testing

progress, and verify defects validity more effectively. The

following subsections describe main aspects of the

development of the STeM tool in more detail.

A. Key Features of STeM

Generally, the STeM tool allows students to record

requirements, test cases, test results and monitor test

progress. In addition, the STeM tool enables the project

manager (referring to lecturer) to review test cases

development, monitor the testing progress, and verify

defects validity more effectively. The following are the key

features of STeM tool:

● Easy-to-use design – The system is developed in a

simple design that accommodates the testing

process carried out during the software testing

course.

● Support multiple projects– The system supports

multiple projects. Users can create new projects,

update and view project information.

● Personalized user permissions – In the software

development team, there are a range of roles

involved, including software developers, testers,

project managers and all of whom need access to

different information depending on their roles. A

project manager, for example, will only require

read-only access for monitoring and reporting,

while software developers and testers have full

access to the system.

● Document repository – The system allows users to

store test cases, requirements, and test results. All

this information can be updated and deleted where

necessary.

● Assigning and tracking – The system has the ability

of task assignment. Project manager can assign

specific test cases to certain testers, and he or she

can monitor the progress.

● Traceability – The information structure in this

system is designed based on a navigation tree for a

better traceability representation from the

requirements, to test case, to defect, with a record of

the tests executed and the person responsible.

● Reporting - The tool can generate reports and allow

users to download the reports.

B. Design and Development

The STeM is a web-based application and was designed

based on the ‘Model – View – Controller’ design pattern,

supported by Laravel web application framework. The

Model is responsible for managing data received from the

Controller, the View produces a presentation of the Model

(data) in a particular format, and the Controller responds to

the user input and converts it to commands for the Model

or View. Using Laragon tool, the application frontend and

database management system was developed using PHP

and MySQL, respectively. The STeM tool is available at

https://testcasemanagementtool.herokuapp.com

C. Graphical User Interface Design

Below are some screenshots of the developed STeM tool.

The main interface of the system is shown in Fig. 1. This

interface is the main dashboard that lists the projects that

have been registered in the database. There are four menu

options:

1) Add new project: register a new project and

continue working with it when required by the user.

2) Delete: delete the project if the project is no longer

needed.

3) Update: update the project name when the project

name changes.

4) View: add or view requirements for the selected

project. Choosing this option will bring the project

interface as shown in Fig. 2. In this interface, users

can create new requirements, update and delete

requirements.

To support traceability between requirements and test

cases, users can add relevant test cases for each requirement

(See Add Test Case option in Fig. 2). In the test case form

https://testcasemanagementtool.herokuapp.com/

40

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

as shown in Fig. 3, user is required to fill in the following

test case information:

1. Test case identifier – a unique identifier for the test

case which is manually assigned

2. Expected execution time – expected time to

complete the test case

3. Test case title – the essence of the test

4. Pre-condition – preparative steps for setting the

system and testing environment

5. Steps to execute test case – the required steps to

execute the test case

6. Expected result – the expected result after executing

the test case

7. Priority – the priority to execute the test case (low,

medium, high)

8. Attachment file – attached file, screenshot

Once the test case has been executed, the user can update

the test results in Test Result Details form as shown in Fig.

4). The test result attributes are:

1. Identifier – a unique identifier for the test result

which is manually assigned

2. Result – the status of the test cases either pass or fail

3. Comment – make notes to the test execution related

to the observation of the test execution or

suggestions

4. Attachment file – attached file, screenshot, event

log, test log

Figure 1: Main application interface

(Manage Project Use Case)

Figure 2: Project interface to manage requirements

and test cases

Figure 3: Test case form to add new test cases

Fi

Figure 4: Test result details form

41

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

Figure 5: The hierarchical navigation structure to view

traceability between requirements, test cases, and test

results

Figure 6: Reporting Interface

To improve the readability and traceability between the

requirements, test cases, and test results, hierarchy

navigation structure design was used, as shown in Fig. 5.

The top node is the project name, followed by the first,

second and third level child nodes which are the

requirements, the test cases, and the test results

respectively.

Figure 6 shows the summary of the testing information. In

this reporting interface, users can get information about: 1)

number of requirements for a specific project, 2) total

number of test cases created, 3) number of test cases that

have been executed, 4) number of passed or failed test

cases, and 5) number of pending test cases. This

information can also be visualized in graphs and pie charts

for analysis purposes. All users can access this reporting

interface but only the project manager is allowed to export

the information.

V. USER FEEDBACK ON STEM

The STeM tool was developed using prototyping

methodology in which a prototype was built, tested, and

reworked based on the feedback from users. Two

prototypes have been developed and demonstrated to the

UiTM students and lecturers of the Information System

Engineering software testing course. After the

demonstration session, students and lecturers filled the

feedback form. Table 1 summarizes the feedback gathered.

Based on the feedback from the first prototype, two

functionalities were refined: 1) the ability to update user

profile, and 2) additional option to export test information

to .pdf file. In addition, the content organization of

traceability has been changed from a listing style to a tree

navigation structure to improve readability.

In the second prototype, no major changes were requested.

Only the Overview Main page was removed from the

system. The main features and designs of STeM are as

reported in Section 4.

Table 1: Summary of user feedback during first and second

prototype evaluation

Prototype Feedback Refinement

1 The user profile
should provide an
updated operation.

Add new functionality
to manage the user
profile. The user will be
able to update their
profiles. The
information that can be
updated: names, email
address, and password.

1 The system should
trace the requirement
with the test case and
its result. The current
system needs the user
to open so many
pages, so it is hard to
read and trace the
requirements with a
test case. The system
should make it a tree
structure for easier
readability and
traceability.

The user interface of
requirement, test case,
and the test result will
be changed due to
difficult readability.
All the requirements,
test cases, and results
will be in a tree
structure on one page
that will have all the
functionalities to
manage information on
the requirement, test
case, and test results.

1 The Project Manager
should be able to
print out or export all
information of the
project testing into
pdf.

New functionality on
reporting is added. The
report consists of all
information on
requirements, test case,
and test result.

2 Function and feature
work fine, but why do
project managers
need an overview
tab? Because it just
lists all the
requirements and test
cases the same as the
project page. The
overview page should
be excluded from the
system

Exclude overview page
from the system

VI. CONCLUSION AND FUTURE WORK

This paper presents some educational efforts in bridging

industrial practices into the learning of software testing

courses at higher educational institutions. Although there

are many kinds of test management tools available in the

42

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

market, the features presented in STeM may be similar but

have been adapted to learning environments that only focus

on organizing the test artifacts. Currently, the STeM can

only support test case creation, traceability between

requirements, test cases, test progress monitoring, and

reporting. Using STeM, students and lecturers has the

following benefits:

● Centralized repository for test artifacts: Students

can create requirements, test cases and upload test

results in a single repository. This avoids the

creation of multiple documents. At the same time, it

is easy for the lecturers to review the accuracy and

validity of the requirements and test cases.

● Manage traceability easily: The hierarchical

navigation structure enables the requirements, test

cases, and test results to be seen in one screen. In

this way, students can ensure that all functional

requirements are accounted for in test cases.

● Provide test metrics: As part of the course

assessment, lecturers are able to monitor students’

performance and their test progress from the

recorded test metrics, such as total test pass/fail,

total test runs, total test cases executed per day or

per person.

In the future, the STeM system is planned to support other

test management process that can provide the following

functions:

● Test monitoring and control – provide a mechanism

to monitor the status of projects either on schedule

or otherwise.

● Defect report management – provide the ability to

record defect reports for specific test cases. In

addition, traceability between requirements, test

cases, test results, and defect reports can be

improved.

● File import/ export – provide the ability to import

test cases from excel or other types of file, and

automatically create the navigation tree structure. In

addition, the data from the system can be exported

to certain types of file like, .cvs or .doc.

ACKNOWLEDGMENTS

Support from the Fundamentals Research Grant Scheme

(FRGS) under contracts FRGS/1/2018/ICT 01/UITM/02/1,

Universiti Teknologi MARA (UiTM) is highly

acknowledged.

REFERENCES

Bai, G. R., & Stolee, K. T. (2020). Improving Students’

Testing Practices. In Proceedings - 2020 ACM/IEEE

42nd International Conference on Software

Engineering: Companion, ICSE-Companion 2020

(pp. 218–221).

https://doi.org/10.1145/3377812.3381401

Barr, M., Nabir, S. W., & Somerville, D. (2020). Online

Delivery of Intensive Software Engineering

Education during the COVID-19 Pandemic. In 2020

IEEE 32nd Conference on Software Engineering

Education and Training, CSEE and T 2020 (pp. 244–

249).

https://doi.org/10.1109/CSEET49119.2020.9206196

Burnstein, I. (2006). Practical Software Testing: A

Process-Oriented Approach. New York, New York,

USA: SpringerProfessional Computing.

Chan, F. T., Tse, T. H., Tang, W. H., & Chen, T. Y. (2005).

Software testing education and training in Hong

Kong. In Proceedings - International Conference on

Quality Software (Vol. 2005, pp. 313–316).

https://doi.org/10.1109/QSIC.2005.57

Eldh, S., Brandt, J., Street, M., Hansson, H., & Punnekkat,

S. (2010). Towards fully automated test management

for large complex systems. In ICST 2010 - 3rd

International Conference on Software Testing,

Verification and Validation (pp. 412–420). IEEE.

https://doi.org/10.1109/ICST.2010.58

Elgrably, I. S., & Ronaldo Bezerra Oliveira, S. (2020).

Model for teaching and training software testing in

an agile context. In Proceedings - Frontiers in

Education Conference, FIE (Vol. 2020-Octob).

https://doi.org/10.1109/FIE44824.2020.9274117

Garousi, V. (2011). Incorporating real-world industrial

testing projects in software testing courses:

Opportunities, challenges, and lessons learned. In

2011 24th IEEE-CS Conference on Software

Engineering Education and Training, CSEE and T

2011 - Proceedings (pp. 396–400).

https://doi.org/10.1109/CSEET.2011.5876112

Garousi, V., Rainer, A., Lauvås, P., & Arcuri, A. (2020).

Software-testing education: A systematic literature

mapping. Journal of Systems and Software, 165.

https://doi.org/10.1016/j.jss.2020.110570

Herramhof, S., Petrie, H., Strobbe, C., Vlachogiannis, E.,

Weimann, K., Weber, G., & Velasco, C. A. (2006).

Test case management tools for accessibility testing.

In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) (Vol. 4061 LNCS,

pp. 215–222). https://doi.org/10.1007/11788713_32

Kim, J., Yeom, C., & Shin, J. (2019). Management of

software tests using CASE tools. In ISSE 2019 - 5th

IEEE International Symposium on Systems

Engineering, Proceedings (pp. 2019–2022).

https://doi.org/10.1109/ISSE46696.2019.8984584

Parveen, T., Tilley, S., & Gonzalez, G. (2007). A case study

in test management. Proceedings of the Annual

Southeast Conference, 2007, 82–87.

https://doi.org/10.1145/1233341.1233357

43

International Journal of Practices in Teaching and Learning (IJPTL) Vol (2), No (2)

Safana, A. I., & Ibrahim, S. (2010). Implementing software

test management using SpiraTeam tool. In

Proceedings - 5th International Conference on

Software Engineering Advances, ICSEA 2010 (pp.

447–452). IEEE.

https://doi.org/10.1109/ICSEA.2010.76

Scatalon, L. P., Garcia, R. E., Carver, J. C., & Barbosa, E.

F. (2019). Software testing in introductory

programming courses a systematic mapping study. In

SIGCSE 2019 - Proceedings of the 50th ACM

Technical Symposium on Computer Science

Education (pp. 421–427).

https://doi.org/10.1145/3287324.3287384

Wen, W., Sun, J., Li, Y., Gu, P., & Xu, J. (2019). Design

and Implementation of Software Test Laboratory

Based on Cloud Platform. Proceedings -

Companion of the 19th IEEE International

Conference on Software Quality, Reliability and

Security, QRS-C 2019, 138–144.

https://doi.org/10.1109/QRS-C.2019.00039

Yu, J. (2019). Design of a Lightweight Autonomous

Learning System for the Course of Software Testing

Based on Android. Journal of Physics: Conference

Series, 1288(1). https://doi.org/10.1088/1742-

6596/1288/1/012051

