UNIVERSITI TEKNOLOGI MARA

PREDICTIVE MODEL OF MAINTENANCE COST IN MALAYSIA ROLLING STOCK: A CASE STUDY WITHIN URBAN RAIL

MOHD FIRDAUS BIN MOHAMAD IDRIS

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Mechanical Engineering)

School of Mechanical Engineering

May 2022

ABSTRACT

The first railway network in Malaysia commenced in 1885 which connected Taiping to Port Weld with the rail length of 13.6 km. Presently, the total length has since expanded to 2984 km. The revolution of the urban rail system occurred mostly in Klang Valley since the location is the main economic source of the country. The network covers 221 km of distance and is still expanding. The National Transport Policy 2030 mentioned that the government is committed to improve the rail system as a national agenda. Rolling stock is a major component of the rail system. Train operating companies (TOCs) are responsible to operate and maintain the systems. Maintenance work is needed to ensure the system's reliability, availability, maintainability, and safety. Comprehensive maintenance entails millions of dollars in cost. It is crucial for the TOCs to have workable and realistic predictive maintenance cost models to understand the cause and effect of the significant variables. Without maintenance cost model, the TOCs are unable to scientifically predict the cost, and this might lead to inaccurate budgeting incurring higher cost to the organisations. This research aims to evaluate the maintenance strategy practiced and to discover the independent variables involved and finally develops a maintenance cost model. Primary data was collected using a survey conducted among five TOCs. The primary data was used for ranking analysis utilizing the Importance Index. The secondary data was obtained from the ABC Company to establish empirical data for the analysis of the rolling stock maintenance cost and to develop the structural equation modelling. The research established a scientific approach to predict the rolling stock maintenance costs model. The developed approach introduces scientific and structured concept to assist the management level in producing more accurate budgetary estimates of the rolling stock maintenance that satisfy the organization's needs. The established approach integrates correlation analysis and structural equation model with regression analysis to model the maintenance cost using the SPSS and SEM AMoS software. The finding revealed that the Preventive and Corrective Maintenance were the mostpracticed strategies. The Workforce and Spare Parts were discovered to be important variables influencing the maintenance cost. Eventually, six maintenance cost models were developed. The Depreciation Office, Employees Provident Fund, Salary, Consumable Spares, Repairable Spares, and Freight Charges were found to be among the significant variables affecting the maintenance cost model. The model was validated using numerical analysis. The model practicality was assessed by the subjectmatter experts of the industry. As a recommendation, it would also be beneficial to develop a predictive model for the maintenance costs of the intercity, freight trains and high-speed train in future.

ACKNOWLEDGEMENT

Bismillahirahmanirohim,

Alhamdulillah, all praises to the Lord Almighty for His grace and blessing that has enabled me to pursue my Doctor of Philosophy program. I humbly pray that peace will always be upon the beloved prophet Muhammad who has always been a role model for all mankind.

First and foremost, I would like to present my deepest gratitude to my supervisor, Professor. Ts. Dr. Nor Hayati Saad for her guidance, support and sharing of knowledge throughout the whole process and journey. I offer my special thanks to all my cosupervisors, Associate Professor. Dr. Wan Mazlina Wan Mohamed, Associate Professor. Dr. Adibah Shuib and Dr. Mohamad Irwan Yahaya for their endless support and encouragement. I would like to offer my deepest gratitude to my best friends, Ts. Dr. Afzan, Mr. Mahathir, Mr. Zairul, Mr. Furis, Mr. Muslim, Ts. Zulhimi, Ts. Hamidi and Ar. Fahmi for their unwavering support that motivates me to always produce my best especially for this research. Thank you to Pn. Syuhada, and Miss. Renee Chelveraj for being a good support system for me to complete this research. Special thanks to my industry supervisor, Ir. Ahmad Nizam Mohamed Amin and Ir. Sofian Husin for guiding me in developing the realistic predictive maintenance cost model. I am also very thankful to the Head of Post-Graduate Study, Associate Professor. Dr. Sheila Belayutham and Program Coordinator, Ts. Dr. Fazlina Ahmad Ruslan for their endless support in ensuring the accomplishment of this thesis. I am ever so grateful to my mother, Haliza Binti Talib and my late father, Mohamad Idris Bin Mohd Taib for raising and guiding me to be the best person I can be. My sincere gratitude also goes out to my family members including my parents-in-law, Mohd Syukur and Suraya Roslan and my brothers Faizal and Farhan for their continuous support and assistance. My most heartfelt gratitude goes out to my beloved wife, Nur Musfirah Syukor who has been extremely supportive throughout my post-graduate journey. Thank you to my precious daughters, Nur Aleesya Afrina and Nur Aisyah Azreena for always giving me the strength and encouragement to complete the whole four-year program. Finally, I would like to thank all my colleagues and friends who have helped and supported me throughout this journey.

TABLE OF CONTENTS

CON	IFIRMA	ATION BY PANEL OF EXAMINERS	ii		
AUT	THOR'S	DECLARATION	iii		
ABS	iv				
ACK	KNOWL	EDGEMENT	v		
TAB	LE OF	CONTENTS	vi		
LIST	Г OF ТА	ABLES	xii		
LIST	r of fi	GURES	xix		
LIST	Г <mark>OF</mark> SY	VMBOLS	xxiii		
LIST	LIST OF ABBREVIATIONS				
CHA	PTER	ONE: INTRODUCTION	1		
1.1	Resea	rch Background	1		
1.2	Proble	em Statement	6		
1.3	Resea	10			
1.4	Resea	11			
1.5	Scope	11			
1.6	Signif	icance of The Research	12		
СНА	PTER	TWO: LITERATURE REVIEW	15		
2.1	Introd	luction	15		
2.2	The M	15			
	2.2.1	Operation and Maintenance	20		
	2.2.2	An overview of the Malaysian Railway	25		
	2.2.3	Train Operating Companies in Malaysia	27		
	2.2.4	Kelana Jaya Line	29		
	2.2.5	Structure of The Kelana Jaya Line Management	30		
	2.2.6	Type of Rolling Stock	34		
	2.2.7	Sub System of Rolling Stocks	34		
	2.2.8	Maintenance Facilities	35		

	2.2.9	Rolling Stock Life Span	37
2.3	Overv	iew of Maintenance	37
	2.3.1	Maintenance Philosophies	40
	2.3.2	Maintenance Policy	40
	2.3.3	Maintenance Strategy	41
	2.3.4	Traditional Versus Contemporary Maintenance	49
2.4	Rollin	g Stock Maintenance Strategy Practiced	50
2.5	Typical Rolling Stock Maintenance Strategy		
	2.5.1	Corrective Maintenance	53
	2.5.2	Preventive Maintenance	53
	2.5.3	Overhaul Maintenance	55
	2.5.4	Refurbishment Maintenance	55
	2.5.5	Condition Based Maintenance	56
	2.5.6	Predictive Maintenance	56
2.6	Maint	enance Levels	57
2.7	Rolling Stock Maintenance Cost		
	2.7.1	Independent Variables for Rolling Stock Maintenance Cost	65
	2.7.2	Recent Research on Variables of Maintenance Cost	66
2.8	Influential Factors of Maintenance Cost		
	2.8.1	Manpower Cost	72
	2.8.2	Operation and Maintenance Cost	73
	2.8.3	Supply Chain Cost	81
	2.8.4	Facilities Maintenance Cost	85
	2.8.5	Other Cost	87
2.9	Opera	tion Management	89
	2.9.1	Predicting	91
2.10	Questi	ionnaire Design	92
	2.10.1	Survey in Operations Management	92
	2.10.2	Judgmental Sampling	95
	2.10.3	Likert Scale	96
	2.10.4	Ranking of The Factors	97
	2.10.5	Reliability Test	98
2.11	Descri	ptive Analysis	98
2.12	Infere	ntial Statistic	98