
FINtltl TIEll!ft PKOJIECl PAIPEK 

blYLOMA IN MECt1d11MIClll EJi!QINEEKll!'i(JJ 

[F�(\IL TT or MIE.CtMINIC�L ENQINIE.DHNQ 

M'1JKA !N.STll\JllE Of fECttlMOlOQT 

Stum �Lt1M .SIEl�NQO� [D. E 

:l:�(i]i!'lil1:r:lmrJQ lrrn:�i<ll(T!Vt: lt)fr.5jijrJ ·tJl5i!N!JJ IMTI:lftrJr:T AIIPVlll('4lllO?i 

,r lf'H�Si: I � 

�OZd'.llfDI .§ltMJjlj�ir 

Tt:IWJiK\J t41111l™ID ru.lSmrD� T[!MQK'ij r-OO�mm 

n���/l1M�ID Jt51¥{tJll Z\JU:lr!U 

1 000�1:� 1597 ) 



ACKNOWLEDGElHENT 

The authors would like to express their deepest gratitude and appreciation to En. 
Shahamdin Ahmad, our project supervisor, for his valuable contributions and suggestions 
towards the success. of this project paper. 

1l1e authors are also sincerely grateful to 

1. En. Abd. Malik

2. En. Shahrif

For their selflessness and priceless guidance in contributing for this project paper. 
However in addition to the person above, the author would also like to convey their upmost 
gratitude to the many individuals who helped towards the success of this project 

The authors hope that the project paper would assist and guide future Internet 
programming with much ease. 



OBJECTIVE 

This project, Engineering Interactive Design Using Internet (phase 1) is basically a 
introduction to the engineering students to the world of programming and publishing the 
program through the Internet. We are using Java WorkShop as a software to build an 
interactive program:. 

The program that we had produced is a basic interactive design where users can 
draw ovals. It is a kind like Auto CAD but it's much more simpler. Our program can be 
access through the Internet only because we made this program to use by the Internet surfers 
around the world. 

Not only that, we are also introduces tlie way how to make a Web page and publish 
it through the Internet. So, to the Internet surfers that only surfs through the Internet, try 
make your own page: 



CONTENTS 

Chapter 1 

The Java Worlcshop Model, 1 

A Brief History of Software Development, 1 
The Java WorkShop Way, 2

OfTools, 2 
Applets and the Web, 3 

Security, 3 

Server, 3 
Projects, 3 
The Great Cycles: Edit-Compile and Edit-Compile Debug, 7

Visual Java, 5 
GUI Layout, 5 

GUI Behavior, 5 

GUI Design for Large Application, 6 
Tips and Trick, 6 

Chapter 2 

Editing Multiple Files, 6 

Starting Up Portfolio, 6 

Organizing Projects by Means of Portfolios, 7

Java V\/orlcshop Basics, 8 

Java WorkShop Tools, 8 
Java WorkShop Browser, 10 

The Tool and Menu Bars, 11 

Browser Navigation Icons, 11 

Browser Header and URL Bar, 11 

Browser Preferences, 11 
Java WorkShop Messages, 12' 
Java WorkShop Files and Directories, 12 

Ch�pter ··3 

Projects and Portfolio, 13 

What is a Java WorkShop Project?, 13 



A BRIEF IIlSTORY OF SOFTWARE DEVELOPEMENT 

We still deal with programming a line at a time because of the days when programs were written as 
a pile of cards and the cards were run through a card reader. In those days, programs executed as cards were 
read, and program editing consisted of adding and removing cards. More sophisticated mainframes stored 
the cards temporarily on disk before they were run. Since computers were expensive and operating systems 
were primitive, they had to be shared among many people, one person at a time. Programs had to be 
designed to run and complete so next user could have the machine. 

Online systems came next. Even though the first online systems were designed for mainframes, 
time-sharing was nonnally associated with minicomputers running operating systems like UNIX. Interactive 
programming was born. Programs were still written in text in line-oriented text editors like ed. As printing 
terminals gave way to video displays, _real editors like Emacs and vi appeared. 

The UNIX development environment consisted of a shell a bag of utility programs like diff, grep, 
lint, and adb, and a compiler like cc. Specialized tools like yacc made it easy to write sophisticated parsers. 
The 64-kilobytes memory limit of early minicomputers encouraged a small-is-beautiful approach. The 
programmer had to figure out clever ways to combine the UNIX utilities to get the job done. Fortunately, 
programming was so much simpler in those days, since a single program couldn't contain more than a few 
thousand lines of code and user interfaces were rarely more sophisticated than a simple conversational 
typewriter like scheme. 

The personal computer revolution spawned its own editors; for example, WordStar (really a word 
processor) provided many programmers with a useful tool. Otherwise, the early personal computers were 
too much like early minicomputers to allow for much innovation in development tools. The pervasiveness 
oflow-resolution graphics capabilities in these early PCs did lead to creation or'more graphics program with 
very different demands of programming tools. Little could be done, however, to expand the kinds of tools 
being used - until 1981, when IBM PC, with more than 64 kilobytes of RAM, marked the entry of 
affordable machines in the market. 

The revolutionary Borland development environment, TurboPascal, was first released in 1983. This 
was the first combined text editor and fast compiler in one product. Through a succession of releases, 
Borland extended and perfected the concept of the integrated development environment. By the release of 
TurboC 2.0 in 1988, the environment included projects to build multifile programs, an integrated editor, 
debugger, compiler, and online help with a finely tuned, text based, windowing user interface. Everything 
about the product was engineered to make the mechanics of building and testing a program effortless. 

Integrated environments came late to the UNIX world because as UNIX has evolved, programmers 
have assembled and integrated their own environment. They use high-powered workstations with numerous 
windows running different tasks. ·Although there's more typing involved, an ingenious UNIX hacker can 
customize shell scripts and makefiles to do almost anything. The flexibility is unbounded, even it does take 
a long time to put it all together. 

Integrated environments, is contrast, use an all in one approach, and if you don't like one of the 
tools, you really can't move easily to another tool without switching the whole environment. Years of tool 
development, however, have made the PC environments very effective and easy to use. 

TI1e Java WorkShop design draws from the combined wisdom or the UNIX and the PC worlds. 
Here, Java.has proven itself invaluable. Because Java Workshop is written in Java, tools written as applets 
can share project infonnation, allowing for sophisticated integration. Adding new tools is as easy as writing 
a new applet. Collaborative groups of applets can leverage the capabilities of Java to bring all kinds of new 
functionality for you. What you see today is only the beginning. 

1 




