UNIVERSITI TEKNOLOGI MARA

EFFECT OF VIBRATION ON HYDRAULIC CONDUCTIVITY OF RIVERBANK FILTRATION SITE

FAUZI BIN BAHARUDIN

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Civil Engineering)

School of Civil Engineering

April 2022

ABSTRACT

Riverbank filtration (RBF) is a process where the river water is induced to flow through the riverbed soil to pumping wells located at the banks. This system has shown in recent years to be very effective at controlling plenty of contaminants, microorganisms, and also reducing concentrations of total and dissolved organic carbon. However, due to long and continuous pumping, the efficiency might decrease because of soil clogging. This decreased can be quantified and reflected as the change of hydraulic conductivity (K) values at the pumping site. This study aims to assess the variability of soil hydraulic conductivity at groundwater pumping site and also to study the effectiveness of vibration method to improve the hydraulic conductivity. The study was carried out by measuring the K values using slug test method at three pumping wells, namely MW01, MW02 and MW03 with several durations of vibration ranging from 30 minutes to 240 minutes. The result shows that average values of hydraulic conductivity of the soil were found to have increased for all wells. The trend of K changes increased with longer duration of vibration indicated improvement of the hydraulic conductivity. The shortest duration of vibration which is 30 minutes was able to improve K values within the range of 7.2% to 9.0%. The longest duration of vibration which is 240 minutes was able to get K improvement from 27.2% to 37.7%. The prediction models of hydraulic conductivity (K) improvement were developed using three training algorithms which were Scaled Conjugate Gradient (SCG), Bayesian regularization (BR) and Levenberg-Marquardt (LM). The results have shown that the model developed with Scaled Conjugate Gradient (SCG) algorithm provided the best prediction with values for mean squared error (MSE) of 58.59 and R of 0.86. Thus, it has been proven that the vibration can be an effective method and this model can be used for future study on improvement of hydraulic conductivity of the soil.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah SWT for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully. My gratitude and thanks go to my main supervisor, Dr. Janmaizatulriah Jani as well to my Co Supervisors, Assoc. Prof. Ir. Dr. Lee Wei Koon and Assoc. Prof. Ir. Dr. Rozita Jailani for all the guide and assistance throughout the years. This is indeed a monumental task for me and without their help, I will not be able to make it. Thanks so much.

My sincere appreciation goes to the Laboratory staff namely, En. Muhamad Faiz, En. Mohd Aliff and Pn. Salhafizah who provided the facilities and assistance during sampling and site work. Special thanks to my PKA colleagues and friends for helping me with this project. Special appreciation also goes to my fellow JL Clan members in which their tireless supports and endless motivation has help me to go through with my study.

This thesis is also dedicated to my beloved family. My wife, Dr. Noor Khairiyah Shazwani who understood the hardship of living this PhD life together with me. My precious children, Muhamad Faiq Akhtar, Nur Farihah Sumayyah and Nur Farheen Naurah, Babah love you all so much and I promise I will make it up to you guys on the precious times we had lost along the way. Finally, to my parents, Hj. Baharudin Hamid and Hjh. Norashikin Mohd Noor for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

CON	FIRMATION BY PANEL OF EXAMINERS	ii	
AUTHOR'S DECLARATION			
ABSTRACT			
ACK	NOWLEDGEMENT	V	
TABLE OF CONTENTS LIST OF TABLES			
LIST OF SYMBOLS			
LIST OF ABBREVIATIONS			
СНА	PTER ONE INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement		
1.3	Research Objectives		
1.4	Scope of Work		
	1.4.1 Riverbank Characteristics	8	
	1.4.2 Hydraulic Conductivity (K) Investigation	8	
	1.4.3 Improvement of Hydraulic Conductivity by Using Vibration	9	
	1.4.4 Development of Prediction Model	10	
1.5	Significance of Study	10	
СНА	PTER TWO LITERATURE REVIEW	12	
2.1	Introduction		
2.2	Groundwater Treatment and Remediation	13	
2.3	Riverbank Filtration System (RBF)	17	
2.4	Clogging in RBF System		
	2.4.1 Types of Clogging	19	
	2.4.2 Process of Clogging	20	
2.5	Maintenance of Groundwater Wells	21	

2.6	Hydraulic Conductivity (K)		23
	2.6.1	Falling Head Test	25
	2.6.2	Constant Head Test	27
	2.6.3	Slug Test	28
2.7	Soil Vibration		
2.8	Research and Studies on Hydraulic Conductivity		
2.9	Machine Learning for Data Classifications and Prediction Modeling		
	2.9.1	K-Nearest Neighbour Algorithm (kNN)	35
	2.9.2	Artificial Neural Network (ANN)	36
	2.9.3	Performance Measures of Classification Models	39
СНА	PTER 1	THREE RESEARCH METHODOLOGY	40
3.1	Introdu	uction	40
3.2	Design of Methodology		
3.3	Description of Study Area		
3.4	Soil Investigation		
3.5	3.5 Measurement of Hydraulic Conductivity (<i>K</i>)		
	3.5.1	Slug Test	45
3.6	Application of Vibration at Riverbank		
3.7	Develo	opment of Prediction Model	55
	3.7.1	The ANN Modeling and its Performance Measures	55
СНА	PTER F	FOUR RESULTS AND DISCUSSION	61
4.1	Soil C	haracteristics at the Riverbank	61
4.2	Prelim	inary Pumping Test	62
4.3	Effect of Vibration to Hydraulic Conductivity		
4.4	Predic	tion Model using Artificial Neural Network (ANN)	77
CHA	PTER F	FIVE CONCLUSION AND RECOMMENDATION	87
5.1	Introduction		
5.2	Riverbank Characteristics and Trend of Hydraulic Conductivity (K)		
5.3	Applic	cation of Vibration at Riverbank	88
5.4	Develo	opment of Prediction Model using Artificial Neural Network (ANN)	89