UNIVERSITI TEKNOLOGI MARA SHAH ALAM SELANGOR DARUL EHSAN

FINAL YEAR PROJECT REPORT

'THE STUDY OF CRACK INITIATION IN SINTERED STEEL AND MILD STEEL UNDER FATIGUE'

PREPARED BY: 1. AHMAD BIN ASHARI 97278288 2. ZAID BIN ZAHARI 97278727

B.Eng. (Hons) in Mechanical

FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA SHAH ALAM, SELANGOR

MAY 2000

ACKNOWLEDGEMENT

Assalamualaikum w.b.t.

Praise and grace to Allah s.w.t. for under His blessed, which allows us to completed our final project even though there are some problems occur during the experiments.

This final year project is a prerequisite to fulfill the requirement of B.Eng. (Hons) in Mechanical from Universiti Teknologi MARA. The credit also goes to SIRIM for conferring us the material HAP 10 enables us to proceed with this project.

First we would like to express our gratitude to our project advisor, Ir. Dr. Mohd Nor Berhan for his guidance, advises, ideas, information and knowledges during working out with this project. Although this is the first kind and lacking of references and equipment for this project, we were faced with uncertainly and managed to get through.

We also like to express our appreciation to the staff of Mechanical Engineering Department especially Mr. Abu (Material Science Lab Technician). Mr. Ayub (Metallurgy Lab Technician), Mr. Adam and Mr. Halim (Workshop Technician) for their contribution and helping our way in conducting testing, knowledge, information and handling various types of machine.

Lastly, thank you to all lecturer, technician in the Mechanical Engineering Department, UiTM, to all our classmate, family and our friends who are giving us a guide and support to complete this project.

AHMAD BIN ASHARI (97278288) – 1997/2000 ZAID BIN ZAHARI (97278727) – 1997/2000

CONTENTS

		PAGE
CHAPTER 1: HIST	FORICAL AND OVERVIEW	
1.1 Introduct	ion	1
1.2 Why do p	part breaks (fail)?	2
1.3 Historical Perspective		3
1.3.1	Early Fatigue-cracks Initiation Research	4
CHAPTER 2: THE	MATERIALS	
2.1 Steels		5
2.2 Sintered	Steel	6
2.2.1	Powder characteristization	7
2.2.2	Sintered Steel Processing	8
CHAPTER 3: FAII	LURE ANALYSIS (THEORY)	
3.1 Introduct	ion	12
3.2 Fatigue		14
3.2.1	Fatigue life	18
3.2.2	Factors affecting fatigue life	19
3.3 Fatigue	21	
3.3.1	Crack-initiation Mechanism	21
3.3.2	Viscoplasticity	23

3.3.3	Cavitation	23
3.3.4	Oxidation and corrosion	25
3.4 Slip Mec	hanism	29
3.5 Fatigue c	rack propagation	31
3.6 Yield Str	ength 🐁	33
3.7 Develop	nent of microstructure and alteration of Mechanical Properties	35
3.7.1	Martensite	35
3.7.2	The Martensite transformation	36
3.7.3	Tempered Martensite	37
3.8 Equipme	nt is used to observed the fatigue	38
3.8.1	Scanning Electron Microscope (SEM)	39
3.9 The value	e of Electron Microscope	40

CHAPTER 4: JIGS DESIGN

4.1 Precedure to make Upper part		41
4.2 Heat treatment of steel (JIGS)		43
4.3 Steel heat treatment		44
4.3.1	The basic heat treatment process	47
4.3.2	Factors influencing heat treatment of steels	49

CHAPTER 5: SPECIMEN PREPARATION

5.1 Introduction	56
5.2 Determination of the specimen thickness (circular plate bending)	58

CHAPTER 1: HISTORICAL AND OVERVIEW

1.1 Introduction

During the process of a fatigue failure, microcracks initially form and then coalesce or grow to macrocracks, which propagate until the fracture toughness of the material is exceeded and final fracture occurs. For the present purposes, in which we are generally considering metals in the usual range of grain size (2 to 200µm), a microcrack may be defined as smaller than a few grain diameters; a macrocrack may be taken as larger than this. This presentation will be concerned with the phenomenology of formation of microcracks, growth of microcracks to macrocracks (usually a slow step), and the subsequent slow growth of macrocracks at low values of the alternating stress intensity near threshold, ΔK_o . Comparison of the growth of microcracks at high cyclic stress where ΔK is approximately the same will also be made.

It should be recognized that in the almost all fatigue failures most of the lifetime is spent in the initiation and slow-growth stages, yet these have received less attention in the recent literature than macrocrack propagation at higher growth rates.