A COMPARATIVE STUDY ON DETERMINING THE UNDRAINED SHEAR STRENGTH PARAMETER OF SOIL BY USING THE H-OMETER TEST AND THE UNCONFINED COMPRESSION TEST (UCT)

BY:

AHMAD ZAIDI BIN HAMPDEN MAUREEN NEGING

NOVEMBER 2007

ACKNOWLEDGEMENT

We would like to extend our deepest gratitude to Universiti Teknologi MARA for financing this study. We would also like to extend our sincere appreciation and thanks to those who have assisted us in bringing this study to its present form.

Prof.essor Dr. Azni Ahmed (Deputy Vice Chancellor – Research) Institute of Research Development and Commercialization (IRDC) UiTM Shah Alam

.

Associate Professor Dr. Jamil Hj. Hamali (Campus Director, UiTM Sarawak Samarahan Campus)

Associate Professor Dr. Rosita Shuhaimi (Coordinator, Unit of Research, Development and Commercialization, UiTMKS)

Dr. Dayang Maryani Awang Hashim (Ex-Coordinator, Unit of Research, Development and Commercialization, UiTMKS)

TABLE OF CONTENTS

CONTENTS		PAGE
TITLE PAGE		ii
APPOINTMENT LETTER		iii
LETTER OF SU	BMISSION	vi
PROJECT TEAM	A MEMBERS	vii
ACKNOWLED	JEMENT	viii
TABLE OF CON	NTENTS ~	ix
LIST OF TABLE	ES	xii
LIST OF FIGUR	ES	xiii
ABSTRACT		XV
Chapter 1: INT	RODUCTION	1
1.1. An Overview	,	1
1.2 Background of the Study		i
1.2 Dackground of the Study		3
1.4 Significance	of the Study	4
1.5 Scope of the Study		4
1.6 Research Objectives		5
1.7 Definition of Terms		5
1.8 Summary		6
Chapter 2: LIT	ERATURE REVIEW	7
2.1 Introduction		7
2.2 The Applicat	ion of Measuring Device in Geotechnical Engineering	8
2.2.1 Tł	ne Development in Geotechnical Engineering Testing	8
2.2.2 Fi	eld Testing	11
2.2.3 La	aboratory Testing	15
2.3 Pressuremeter		17
2.3.1 U	ndrained Shear Strength from Pressuremeter Test	19
2.3.2 La	aboratory Tests Involving Pressuremeter	25
2.4 H-Ometer		28
2.4.1 M	ajor Components of the H-Ometer	28
2.4.2 A	ssembling the H-Ometer	30
2.4.3 Ri	unning the Test	32 24
2.4.4 11	ie Application of H-Ometer	24 26
2.5 Compaction		50

2.5.1	Theory of Compaction	37
2.5.2	The Need of Adequate Control for Compaction	38
2.5.3	Compaction Control Testing	39
	2.5.3.1 Historical Approach	40
	2.5.3.2 Laboratory Compaction Testing	40
	2.5.3.3 Field Density Testing	42
	2 5 3.4 Relative Compaction	43
	2.5.3.5 Compaction Control by Other Methods	44
2.6 Unconfine	ed Compression Test (UCT)	50
2.6 1	Undrained Shear Strength (s_n)	51

Chapter 3: METHODOLOGY

53

58

3.1 Introduction	53
3.2 Sampling of soil samples	53
3.3 Classification	54
3.4 Model Material	54
3.5 H-Ometer Testing	54
3.6 Unconfined Compression Test (UCT)	55
3.7 Comparison on the Consistency of the Undrained Shear Strength	55
(S_n) Value from both Method of Testing	

Chapter 4: RESULTS & DISCUSSION

58 4.1 Introduction 4.2 Sample Preparation 58 4.3 Soil Classification 59 4.3.1 Particle Size Distribution 59 4.3.2 Specific Gravity 60 4.3.3 Atterberg Limits 60 Maximum Dry Density and Moisture Content 434 61 Relationship 4 4 H-Ometer Testing 62 4.4.1 H-Ometer Testing Calibration 62 4.4.2 Determination of Undrained Shear Strength (s_n) by using the 67 H-Ometer 4.5 The UCT testing 77 4.5.1 Determination of Undrained Shear Strength (s_u) using the 81 UCT 4.6 Consistency of S_u values obtained from both the H-Ometer and the UCT 87

ABSTRACT

There are many new types of equipment developed in the market for soil testing and compaction control ranging from a simple penetration gadget, to more sophisticated high-tech equipment. The prices for these more sophisticated high-tech equipments are relatively very high. The H-Ometer is test equipment which is relatively cheaper and easier to use in terms of operation. Thus, it may provide an alternative in determining the soil parameters if proven to produce reliable results.

This study aims on confirming the accuracy and reliability of the results obtained from H-Ometer which is determined by comparing its readings to the readings from the Unconfined Compression Test (UCT) as UCT is established as a reliable testing equipment in determining the Undrained Shear Strength (S_u) parameter.

A comparison in terms of consistency of both testings was also conducted and the more consistent results from both tests could be distinguished.

The findings revealed that the S_u values obtained from the H-Ometer test is higher from the S_u values obtained from the UCT test and the H-Ometer test gives a more consistent reading in comparison to the UCT test. These findings support H-Ometer test as a reliable alternative to UCT test in determining the Undrained Shear Strength (S_u).