UNIVERSITI TEKNOLOGI MARA

OPTICAL MICROSPHERE AND MICROBOTTLE RESONATOR FOR SENSOR AND LASER APPLICATION

UMMU UMAIRAH BINTI MOHAMAD ALI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Electrical Engineering)

Faculty of Electrical Engineering

December 2022

ABSTRACT

Micro-resonators have been attracting attention due to their many advantages including their ability to confine light with high quality factor (Q) and in a small modes volume. They are typically associated with circular-path resonant cavities such as micro-ring, micro-disc and micro-toroid geometry and these resonators can support whispering gallery mode (WGM) operation by creating continuous internal reflection at specific resonant wavelengths. According to the geometrical optic principle, a WGM can be represented by an optical ray transmitted exclusively near the micro-resonator surface due to grazing-angle total internal reflection. When light is evanescently coupled into the micro-resonator via a microfiber, very narrow resonance dip with a full width half maximum (FWHM) on a level of pm appears in the transmission spectrum. The optical WGM device can be applied in many areas including optical sensing and lasing. The aim of this research is to develop a micro scale of resonator as a sensor and laser technology which can create devices that are extremely small sized, ultra-lightweight and have the potential to be manufactured at low cost. In this thesis, two types of resonator micro-sphere (MSR) and micro-bottle (MBR) are fabricated using silica fiber with "soften and compress" method. The MSR and MBR is then characterized by employed some range of wavelength from tuneable laser source. The resonance depth is captured for every MSR and MBR condition. The Q-factor was defined by calculation, which used to identify the quality of resonance depth. The MSR and MBR was then used as sensor to sense different relative humidity (RH). For instance, as the RH increases from 40% to 100% the microfiber 8µm coupled with MSR shows sensitivity of 0.2840 dB/% with a slope linearity of more than 97.80% and a limit of detection of 19.132%, while for MBR produces sensitivity 4.7% better than MSR, with a slope linearity of more than 99.46% and a limit of detection of 18.3781%. It is found from the results that MBR has high efficiency regarding humidity sensing than MSR. In this study, formaldehyde (CH₂O) liquid sensor also has also been demonstrated using the MBR coupled with 8µ tapered fiber as a probe. The sensor performance without MBR was also investigated. As concentration of CH₂O liquid was tested within 0 to 6 %, the MBR sensor showed a better sensitivity of 0.09 dB/% with a linearity of 95.3% compared to no MBR. On the other hand, a MSR deposited with tungsten disulphide (WS2) as absorber was used to demonstrate a dual-wavelength Q-switched Erbiumdoped fibre laser (EDFL). The MSR also functioned as a wavelength selective filter for realizing a dual-wavelength Q-switched operation at 1554.0 nm and 1560.7 nm. Stable pulse train is observed within pump power of 104.6 mW to 145.8 mW with maximum repetition rate of 85.1 kHz corresponds to shortest pulse duration of 3.47 µs. The maximum pulse energy of 131.4 nJ was obtained at 145.8 mW pump power.

ACKNOWLEDGEMENT

Firstly, I would like to thank Allah s.w.t, my creator, for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Assoc Prof Dr. Zulzilawati Jusoh and my co supervisor, Dr. Husna Abdul Rahman.

My appreciation goes to my external co supervisor, Prof Dr Sulaiman Wadi Harun from University Malaya, for sharing his expertise in the area of sensors and lasers. Also provide provided the facilities and assistance during my research.

My appreciation also goes to the members of the Photonic Research Center especially, Dr. Md Ashadi, Dr Hafiz Jali, Maslinda, Nur Farhanah, Nur farina, Haziq, Suziana and Norizan You have made the lab most enjoyable to work in despite the many challenges we have to put up with.

Finally, this thesis is dedicated to the loving father and mother thank you for your encouragement and your prayers. This piece of victory is dedicated to both of you. Alhamdulilah.

TABLE OF CONTENTS

Page

CON	NFIRMATION BY PANEL OF EXAMINERS	ii
AUT	THOR'S DECLARATION	iii
ABSTRACT ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES		iv
		v
		vi
		ix
LIST	T OF FIGURES	X
LIST	T OF SYMBOLS	xiv
LIST OF ABBREVIATIONS		XV
CHA	APTER ONE INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objectives of Study	3
1.4	Scope of Works	4
1.5	Significance of Study	5
1.6	Organization of this thesis	6
CHA	APTER TWO LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Optical Fiber	9
2.3	Whispering gallery modes	13
2.4	Optical micro-resonator	14
2.5	Various types of optical micro resonator	17
	2.5.1 Micro Loop Resonator	17
	2.5.2 Micro knot Resonator	19
	2.5.2 Micro Coil Resonator	20
	2.5.3 Micro Ring Resonator	22

	2.5.4 Microsphere Resonator	23
2.6	Micro-bottle resonators	28
2.7	MBR and MSR sensing principle	30
2.8	Optical silica Microfiber	38
2.9	Fundamental of fiber laser	42
2.10	Erbium-doped Fiber Laser	43
СНА	PTER THREE RESEARCH METHODOLOGY	52
3.1	Introduction	52
3.2	Preparation of micro-resonator	53
	3.2.1 Fabrication of MSR Structure	54
	3.2.2 Fabrication of MBR Structure	57
3.3	Humidity Sensing Setup	60
3.4	Liquid Sensing Experiment	61
3.5	Laser Experiment	63
3.6	Measuring equipment	66
СНА	PTER FOUR RESULTS AND DISCUSSION	68
4.1	Introduction	68
4.2	Results and discussion on humidity sensor	70
4.3	Results and discussion on liquid formaldehyde (CH2O) sensing	77
4.4	Result and discussion on performance MSR with WS2 as SA for Q	eswitched
	Erbium Doped Fiber Laser	81
4.5	Summary	84
СНА	PTER FIVE CONCLUSION	85
5.1	Conclusion	85
5.2	Recommendation for future works	87