UNIVERSITI TEKNOLOGI MARA

CRYSTAL CLEAR THERMAL BARRIER COATING OF INORGANIC POLYSILOXANE RESIN FILLED WITH TITANIUM DIOXIDE FOR GLASS COATING APPLICATION

SYAHMINA ATHIRAH BINTI SAUDI

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science** (Polymer Science and Technology)

Faculty of Applied Sciences

October 2022

ABSTRACT

This research develops transparent inorganic polysiloxane resin with TiO_2 to allow certain light wavelength to transmit through coated glass. Epoxy silane and amino silane hardener were synthesised in different molar ratios. Each was tested for their viscosity using Brookfield Viscometer. Different viscosities were observed before reaching constant values which designates complete formations of amide linkages. Highest viscosity of 30.5 mPa/s was recorded. FTIR supported the viscosity result by proving the presence of amide linkages. TiO₂ concentrations of 10%, 20% and 30% (w/v) in dehydrated ethanol were successfully dispersed using high-speed disperser. Dispersed TiO₂ were characterized for size distribution and recorded 87 nm with value of 1 PDI. UV absorber of 2-hydroxybenzophenone (HBP) with boron (BF₃) catalyst was formulated to aid in coating performance. The combined formulation of polysiloxane resin, HBP and BF₃ gives fastest curing time of 60 minutes and was chosen as an ideal coating binder. Surface tension test supported the curing results. Smart coating (SC) formulations consist of ideal coating binder and TiO₂ dispersion was coated on glass for pencil hardness analysis. 6H pencil grade was quoted as the hardest. SC's real-time measurement for UV, IR and daylight transmissions using WEP gives 0%, 10% and 61% of respectively.

ACKNOWLEDGEMENT

I would like to praise Allah SWT for giving me the courage and opportunity in embarking on my Master's Degree and for the strength He gave upon me in completing this long and inspiring journey successfully. My deepest gratitude and thanks go to my supervisor, Dr. Ahmad Faiza bin Mohd and my co-supervisor Dr. Norazura binti Ibrahim, for their continuous guidance, patience and support.

My appreciation also goes to all staff and laboratory assistants of the Institute of Science (IOS) and Polymer Technology Department from the Faculty of Applied Sciences for providing the most needed guidance and expertise, facilities and assistance in my research that without them, this thesis may not have been completed.

Finally, this thesis is also dedicated to my loving parents; Saudi bin Hamzah and Asmah binti Mazlan and my darling brothers, whose unyielding love and encouragement have enriched my soul to pursue and complete this research as well as to my friends who have been with me in every step of the way through good times and bad. This piece of victory is also dedicated to my cat, Roy.

TABLE OF CONTENTS

CONF	TION BY PANEL OF EXAMINERS	ii			
AUTH	DECLARATION	iii			
ABST		iv			
ACKN	EDGEMENT	v			
TABL	CONTENTS	vi			
LIST	BLES	X			
LIST	GURES	xi			
LIST	MBOLS	xiii			
LIST	BREVIATIONS	xiv			
LIST	MENCLATURE	xvii			
СНАР	TER C	DNE INTRODUCTION	1		
1.1	Resear	rch Background	1		
1.2	Problem Statement				
1.3	Object	tives	5		
1.4	Signifi	icance of Study	6		
1.5	Scope	ope and Limitations 7			
СНАР	TER T	IWO LITERATURE REVIEW	9		
2.1	Coatin	Coating Film for Glass Window			
	2.1.1	Types of Coating Resin for Glass Window Applications	10		
	2.1.2	Binder	13		
	2.1.3	Functional Filler	18		
	2.1.4	Nano-Particle (NPs) Additives	22		
2.2	Polyamide (PA) 26				
	2.2.1	Formation of Polyamide (PA) Through Condensation Polymeriza	ition		
		or Step-Growth Polymerization	26		
	2.2.2	Formation of Polyamide (PA) through the Ring-Ope	ning		
		Polymerization (ROP) or Chain Polymerization	29		

2.3	Siloxa	ane Oligomer as Coating Resin for Glass Window Application	32		
	2.3.1	The Ring-Opening of Epoxide	34		
2.4	Metho	odology: Dispersion of Nano-Particles (NPs) Additives	37		
	2.4.1	Dispersion Methods	37		
	2.4.2	Effect of Dispersion Solvent	41		
2.5	Appli	cation: Coating on Glass Substrates	42		
	2.5.1	Formation of Coating Film	43		
	2.5.2	Methodology: The Measurement of Infrared (IR), Ultraviolet (UV) a	and		
		Visible Light Transmissions of Crystal Clear Glass Substrates	45		
2.6	Degra	dation of Inorganic Coating	47		
2.7	Testin	Testing and Analysis 48			
	2.7.1	Viscosity	48		
	2.7.2	Fourier-Transform Infrared (FTIR) Spectroscopy	49		
	2.7.3	Particle Sizer for Particle Size Distributions (PSD) and Polydispers	sity		
		Index (PDI)	50		
CHA	PTER	THREE RESEARCH METHODOLOGY	52		
3.1	Introd	roduction 52			
3.2	The Preparation of Inorganic Polysiloxane Resin with Adjusted Ratios fi				
	Two Individual Oligomeric Silanes 5				
	3.2.1	Viscosity Analysis of Inorganic Polysiloxane Resins	54		
	3.2.2	Infrared Characterisation for Amide Linkages of Inorga	inic		
		Polysiloxane Resins through Fourier Transform Infrared (FT	IR)		
		Spectroscopy	54		
3.3	Utilization of Compounded Titanium Dioxide (TiO2) Nano-Particles as Heat-				
	Absorbing Materials in Dehydrated Ethanol				
	3.3.1	Particle Size Distribution (PSD) Analysis and the Polydispersity Ind	dex		
		(PDI) of Dispersed Titanium Dioxide (TiO ₂) with Differ	ent		
		Concentrations	57		
	3.3.2	Curing and Fingerprint Analysis of the Inorganic Polysiloxane Res	sins		
		with Functional Filler to Study its Curing Properties	58		
	3.3.3	Surface Tension of the Inorganic Polysiloxane Resins Using R	ing		
		Tensiometer	59		
	3.3.4	Pencil Hardness (Wolff-Wilborn Method) of Complete Coat	ing		