UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF MoS₂-TiO₂/PVDF-BASED HOLLOW FIBRE MEMBRANES FOR MEMBRANE DISTILLATION DESALINATION

NURUL SYAZANA BINTI FUZIL

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Chemical Engineering)

College of Engineering

October 2022
ABSTRACT

Membrane distillation (MD) is a hybrid system that combines membrane technology with thermal distillation, which has recently emerged as one of the technologies used for seawater desalination. However, MD faced several limitations that hamper its comprehensive utilization for clean water production, such as low desalination efficiency and temperature polarization. In this study, a series of MoS$_2$-TiO$_2$/PVDF membranes were fabricated to improve the performance of MD desalination. The MoS$_2$-TiO$_2$ composite was first synthesized using a one-step hydrothermal with different ratios then the fabrication of PVDF-based hollow fibre membrane was fabricated with varied air gap and additional of polyethersulfone (PES) and finally the surface modification of PVDF-based hollow fibre membrane was done where MoS$_2$-TiO$_2$ was mixed with trichloro(octadecyl)silane in (OTS) for the dip coating process in the fabrication of MoS$_2$-TiO$_2$/PVDF-based membranes. After that that, the XRD, FTIR, TGA, UV-vis, TEM and BET characterization for composite and 5M5T MoS$_2$-TiO$_2$ (50 wt% MoS$_2$ and 50 wt% TiO$_2$) was chosen for surface modification due to its narrow band gap. After the porosity, contact angle, SEM, and mechanical strength analysis, the PVDF-PES which is the fabricated hollow fibre membrane at a 20 cm air gap with the additional of PES (PP20) was found to have better properties and suitable to be used as support for MD application due to its high porosity and low membrane thickness. It was observed that the contact angle of the MoS$_2$-TiO$_2$/PVDF-based membrane increased to 136.8 ± 2.33 ° when the membrane was coated with 0.2% of 5M5T MoS$_2$-TiO$_2$ compared to bare PVDF-PES hollow fibre membrane which is 90.6 ± 1.5 °. The MD performances were then investigated via an in-house MD system using highly saline feed water (35g L$^{-1}$ NaCl) where the hot stream temperature was varied from 50-70 °C. The results indicated that the performances of MoS$_2$-TiO$_2$ coated membranes were much better than previously reported membranes due to the high hydrophobicity and porosity that can enhance the overall permeate flux and rejection. The effects of higher temperature hot feed stream temperature were found to be able in increasing the permeate flux where at 50 °C the permeate flux was 2.97 kg·m$^{-2}$·h$^{-1}$ while at 70 °C, the permeate flux was 23.3 kg·m$^{-2}$·h$^{-1}$. The percentage difference for rejection rate for the membranes at various operating temperature was less than 0.1%. The highest permeate flux obtained was 23.3 kg·m$^{-2}$·h$^{-1}$, with 99.85% salt rejection at 70 °C for 0.2PP20 membrane. Overall, the results obtained in this work suggest that surface hydrophobicity plays a vital role in membrane distillation performances besides the properties of membrane support.
ACKNOWLEDGEMENT

Firstly, I wish to thank Allah for giving me the opportunity to embark on my Master and for almost completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Assoc. Prof. Ir. Ts. Dr. Nur Hidayati Othman, Ts Dr Nur Hashimah Alias and Ir. Ts. Dr. Fauziah Marpani for assisting in the project.

I also would like to thank Prof. Ts. Dr. Mohd Hafiz Dzarfan Othman, Prof. Datuk Dr. Ahmad Fauzi Ismail and Dr. Mohd Haiqal Abd Aziz for allowing me to learn more about membrane technology during my fellowship from 1 October 2020 to 31 December 2020 at Advanced Membrane Technology Research Centre (AMTEC).

My appreciation goes to my colleagues and friends for helping me with this project. Also, my heartiest gratitude for the support from the administrative staff, especially Dr. Fazlina Bt Ahmat Ruslan, Dr. Muhammad Syafiq Hazwan, and technical staff, particularly Mdm. Azizan Din and Mr. Mohd Rizuan Mohd Razlan.

Finally, this thesis is dedicated to my father and mother for their vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIRMATION BY PANEL OF EXAMINERS</td>
<td>ii</td>
</tr>
<tr>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF NOMENCLATURE</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER ONE INTRODUCTION

1.1 Research Background
1.2 Problem Statement
1.3 Objectives
1.4 Scope and Limitation
1.5 Significant of research

CHAPTER TWO LITERATURE REVIEW

2.1 Desalination Technologies for Clean Water Production
2.2 Membrane-based Technologies for Desalination
 2.2.1 Reverse Osmosis
 2.2.2 Forward osmosis
 2.2.3 Reverse electrodialysis (RED)
 2.2.4 Membrane Distillation
2.3 Membrane Distillation (MD)
 2.3.1 Configurations of MD
 2.3.2 Characteristics of MD membranes
 2.3.3 Effects of operating conditions on MD performances
 2.3.4 Challenges in Membrane Distillation (MD) Desalination
2.3.5 Modification of MD membranes

2.3.5.1 Nanomaterial-Modified Membranes

2.3.5.2 Surface coating techniques

CHAPTER THREE RESEARCH METHODOLOGY

3.1 Introduction

3.2 Chemicals and materials

3.3 Synthesis of MoS$_2$-TiO$_2$ composites

3.4 Fabrication of PVDF and PVDF-PES hollow fibre membrane using the dry-wet spinning method.

3.5 Deposition of MoS$_2$-TiO$_2$ composite onto PVDF-based hollow fibre membrane via dip-coating method

3.6 Characterization of TiO$_2$-MoS$_2$ composite powder

3.7 Characterization of uncoated and coated PVDF-based hollow fibre membranes

3.7.1 Porosity and Pore Size

3.7.2 Contact angle

3.7.3 SEM

3.7.4 Mechanical Tester

3.7.5 Membrane Distillation Performances Test

CHAPTER FOUR RESULTS AND DISCUSSION.

4.1 Physicochemical, optical and morphological properties of MoS$_2$-TiO$_2$ composites

4.2 Effects of air gap on the morphologies, structure, wettability and mechanical strength of PVDF (PV) and PVDF-PES (PP) membranes

4.3 Characterization and Performances Evaluation of MoS$_2$-TiO$_2$/PVDF-based membranes for desalination via membrane distillation

4.4 Membrane distillation performances

CHAPTER FIVE CONCLUSION & RECOMMENDATION

5.1 Conclusion

5.2 Recommendation