UNIVERSITI TEKNOLOGI MARA

ENHANCEMENT OF TA₂O₅ NANOSTRUCTURES PROPERTIES VIA ELECTROCHEMICAL ANODIZATION SYNTHESIS METHOD AND SURFACE MODIFICATION WITH GOLD NANOPARTICLES FOR HUMIDITY SENSING APPLICATION

NUR LILI SURAYA BINTI NGADIMAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Mechanical Engineering)

College of Engineering

November 2022

ABSTRACT

Nanostructured metal oxide have been widely employed in electronic devices as sensing layer. One of the most crucial issue in nanostructure fabrication is to optimize the synthesis method in order to produce high sensitivity and reliable sensor. Due to this issue, a synthesis method with high potential to produce metal oxide nanostructures on tantalum foil substrate, namely anodization, is highlighted in this study and surface modification using doped gold nanoparticles is also implemented to improve the characteristics of the nanostructured sensing layer. A set of parameter has been optimized to synthesis Tantalum Pentoxide (Ta₂O₅) via anodization synthesis method. Anodization is one of the simplest synthesis methods for fabricating generous nanostructures metal oxide. The purpose of this study is to optimize the anodization time and voltage of Ta_2O_5 , employ the optimized Ta_2O_5 as humidity sensor and improve the functionality through doping method. The significant growth of anodized Ta₂O₅ nanotubes has increased the number of pore structures and offered more water absorption active sites for humidity sensing detection. Physical and chemical properties of anodized Ta₂O₅ nanotubes were justified using FESEM, XRD, EDX, AFM and UV-VIS analysis. Synthesizing nanostructures through anodization method producing Ta₂O₅ nanotubes with pore diameter ranging between 10 to 50 nm. From XRD analysis, cubic crystalline structure was obtained through annealing at 500 °C for 2 hours, thus improved its crystalline structure and generated a favourable medium of interaction. Then, further surface modification of Ta₂O₅ has been conducted by doping with gold nanoparticles. All fabricated sensors were tested for humidity detection in the range of 40%–90% humidity level to evaluate their response time, repeatability, hysteresis and sensitivity. This study has elucidated the relationship of anodizing time at optimum anodization voltage during nanostructure construction towards the variation of current output in humidity sensing due to the availability of oxygen vacancies and active sites as an effort to improve humidity sensing. Longer anodization times produced nanostructures with improved adsorption of H⁺ ions and linear sensitivity. The Ta₂O₅ nanotubes-based humidity sensor possessed good response time as well as consistent stability and repeatability in long exposure of the test environments. The anodized 60 min sensor operates at 10 V bias voltage shows the most promising performance of humidity sensor with 32.7 nA/%RH of sensitivity, This is due to the presence of high density of pore distribution on the sensors's surface. Hence, anodization is a reliable method to create nanostructures of Ta₂O₅ and enhance the physical and chemical properties to improve H^+ molecules adsorption on the Ta₂O₅ surface. Different concentration of gold nanoparticles (0.12 mM to 0.63 mM) were doped into the Ta_2O_5 nanotubes to act as a catalyst and enhance the functionality of the humidity sensor. According to the characterization results, 0.25 mM gold nanoparticles causes the Ta₂O₅ nanotubes based humidity sensor to produce the best performance. This is expected to occur because the optimum distribution of gold nanoparticles present on the Ta₂O₅ surface enhances the chemisorption and physisorption process which shorters the response and recovery time of the humidity sensor operation.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim.

Firstly, I wish to thank Allah S.W.T. for giving me the opportunity to embark on my Master's degree and for completing this long and challenging journey successfully. My precious gratitude and million thanks go to my main supervisor Ir. Ts. Dr. Rozina Abdul Rani and my co-supervisors Dr. Siti Rabizah Makhsin and Prof. Ir. Dr. Muhammad Azmi Ayub for their continuous support, teachings and advice given which helped me a lot in overcoming the obstacles and problems throughout my study.

My appreciation goes to the laboratory staffs who provided the facilities and assistance during sampling. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my loving mother, Nor Azizah Musa who never stops to encourage me and pray for my success in completing my study. This piece of victory is dedicated to you.

Alhamdulillah.

TABLE OF CONTENTS

CON	ii				
AUI	iii				
ABS	iv				
ACH	v				
TAF	BLE OF	vi			
LIST OF TABLES LIST OF FIGURES					
				LIS	XV
LIS	Г OF SY	xvi xvii			
LIS	Г OF AE				
LIS	Γ OF NO	xviii			
CHA	APTER	19			
1.1	Resea	rch Overview	19		
1.2	Proble	em Statement	20		
1.3	Resea	rch Objectives	21		
1.4	Resea	rch Question	22		
1.5	Signif	Significance of Study			
1.6	Scopes and Limitation				
1.7	Thesis	s Layout	24		
CHA	APTER '	TWO LITERATURE REVIEW	25		
2.1	Introduction		25		
2.2	Nanos	Nanostructure metal oxide			
2.3	Optimization of Anodization Parameter		26		
	2.3.1	Effect of electrolyte composition	28		
	2.3.2	Effect of anodization voltage	30		
	2.3.3	Effect of anodization time	32		
	2.3.4	Effect of annealing condition	33		

2.4	Anodi	ization Mechanism in The Formation of Nanotubes Ta ₂ O ₅	36	
	2.4.1	Formation of nanotubes from nanoporous structures	36	
	2.4.2	Chemical reaction during anodization	39	
2.5	Properties of Ta ₂ O ₅			
	2.5.1	Structural properties	42	
	2.5.2	Chemical properties	45	
	2.5.3	Crystal structure	47	
	2.5.4	Biological properties	52	
	2.5.5	Optical properties	53	
	2.5.6	Mechanical properties	55	
2.6	Poten	tial Application of Anodized Ta ₂ O ₅	56	
	2.6.1	Gas sensor	56	
	2.6.2	Photocatalytic activity	58	
	2.6.3	pH sensing	61	
	2.6.4	Biomaterial sensing layer	64	
	2.6.5	Humidity detection	66	
2.7	Doping Effect on Properties Enhancement			
	2.7.1	Effect of doping materials	73	
	2.7.2	Doping material as humidity sensor	75	
	2.7.3	Gold nanoparticles as dopant material	76	
	2.7.4	Deposition method AuNP on Ta ₂ O ₅	77	
2.8	Chapt	er Summary	78	
СНА	PTER	THREE RESEARCH METHODOLOGY	79	
3.1	Resea	rch Framework	79	
3.2	Mater	Materials And Sample Preparation		
	3.2.1	Synthesis Of Ta2O5 Nanostructures Via Anodization	82	
	3.2.2	Optimization of Ta ₂ O ₅ anodization	84	
	3.2.3	Synthesis of gold nanoparticles via citrate reduction method	85	
	3.2.4	Ta ₂ O ₅ -AuNP doped surface modification at different molarity	85	
3.3	Electr	ode And Humidity Sensor Fabrication	85	
3.4	Mater	ials Characterization	87	
	3.4.1	Field Emission Scanning Electron Microscopy (FESEM)	87	
	3.4.2	X-ray diffraction (XRD),	87	
		vii		