UNIVERSITI TEKNOLOGI MARA

FAILURE ANALYSIS OF BORON/GLASS HYBRID COMPOSITE LAMINATES WITH VARIOUS CUTOUTS SHAPES AND SIZES UNDER BIAXIAL TENSION

MUHAMMAD AMIR AZHAN BIN ZULKIFLI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science** (Mechanical Engineering)

College of Engineering

November 2022

ABSTRACT

Hybrid composite laminates have recently increasing attention in precision engineering field such as aerospace and automotive industries. Studies for failure behaviour of hybrid laminated composites under uniform biaxial loads have been obtained without considering cutouts. Nevertheless, in practice, the structures are provided with cutouts of various sizes subjected to biaxial tension. This study intends to analyse the failure behaviour of Boron/Glass hybrid composite laminates material with various cutout shapes and sizes under biaxial tension. Initially, failure analysis was performed for laminated composite plate without cutout with lamination sequence of $(\theta_4/0_4/-\theta_4)s$ where the angle, θ ranges from 0° to 90° using a Finite Element Analysis (FEA) software, ANSYS. The accuracy of the analysis were compared using analytical method using Matlab based on First Order Shear Deformation Theory (FSDT). Then, next stage involved the failure analysis of hybrid laminated composite plate with various cutouts (circle, diamond and square) and sizes. The ply angles of $(0/\pm 45/90)$ s, $(0/\pm 45)$ s and (0/90)s are modelled. These analyses were performed to determine the failure load by employing Maximum stress criterion and Tsai-Wu criterion. The failure curves were plotted and analysed. Results of Matlab code and FEA based ANSYS software, are in close agreement. In overall, it was found that the determined failure load ranges from 50 MPa to 89 MPa and 153 MPa to 289 MPa for composite laminates with cutout under uniaxial and biaxial tension, respectively. The results show that composite laminates with square cutout shapes able to withstand more load before failure by 1.5 times compared to composite laminates with diamond and circle cutout. Besides, composite laminates with cutout of size A₁ were stronger more than 1.3 times compared to composite laminates with cutout of size A₂ and size A₃. Therefore, this work contributes in the understanding of failure behaviour for composite laminates structure with cutout under biaxial tension.

ACKNOWLEDGEMENT

Firstly, praise be to ALLAH S.W.T., the Almighty, the Beneficent, on whom we ultimately rely for nourishment and guidance. I would want to express my gratitude to Almighty Allah for providing me with the opportunity, determination, and strength to complete my research. Throughout my life, and especially during the course of my studies, his constant love and mercy were with me.

I would like to offer my gratitude to my supervisor, Prof. Ir. Dr. Jamaluddin Mahmud and co-supervisor, PM Ahmad Kamil Hussain for their good advice and support. I am so grateful that they have shown great patience in guiding me and have put lots of effort. It is an honour for me because without their guidance, I would not be able to write and complete the thesis.

My appreciation goes to my friends and everyone who were involved in helping me to complete the thesis. Some of them shared their thoughts and suggested valuable ideas that gave a large impact on my study. I really appreciate their willingness to help me. Without all their support, it would not have been possible to achieve the goals and become successful in completing the thesis.

Finally, this thesis is dedicated to my family for keep supporting me throughout this journey. Even though there were a lot of obstacles, they never forget or left me behind. This work would never have been possible without their motivation. I owe everything to my family, who have supported and encouraged me throughout my personal and academic lives and have a strong desire to see this achievement come true. This work is dedicated to my beloved parents for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

CON	ii			
AUT	iii			
ABS	iv			
ACK	KNOWL	LEDGEMENT	v	
TAB	BLE OF	CONTENTS	vi	
LIST	Г OF ТА	ABLES	ix	
LIST	Г <mark>O</mark> F FI	GURES	xi	
LIST	xiv			
LIST	Г <mark>OF</mark> AI	BBREVIATIONS	xvi	
CHA	PTER	ONE INTRODUCTION	1	
1.1	Resea	arch Background	1	
1.2	Probl	em Statement	3	
1.3	Resea	arch Objectives	3	
1.4	Scope	e and Limitation of Study	4	
1.5	Signit	ficance of Study	4	
1.6	Orgar	nisation of Thesis	5	
СНА	PTER	TWO LITERATURE REVIEW	6	
2.1	Introc	luction	6	
2.2	Comp	7		
2.3	Hybrid Composites			
2.4	Macro	Macromechanical Behaviour of a Laminate		
	2.4.1	Classical Lamination Theory	10	
	2.4.2	First Order Shear Deformation Theory	13	
2.5	Failu	Failure Theories of Composite Materials		
	2.5.1	Maximum Stress Theory	16	
	2.5.2	Tsai-Wu Failure Criterion	17	
	2.5.3	Lee Failure Criterion	17	

2.6	Exper	18			
2.7	Comp	osite Laminates with cutout	19		
2.8	Finite	Element Analysis	22		
2.9	Resea	rch Gap	24		
2.10	Summ	hary	24		
СНА	PTER 1	THREE RESEARCH METHODOLOGY	26		
3.1	Introd	26			
3.2	FE mc	odelling and simulation	28		
3.3	Analy	tical approach using Matlab	31		
3.4	Mesh	Convergence	33		
3.5	Numerical Validation 3:				
3.6	Failure Analysis				
	3.6.1	Failure behaviour of composite laminates without cutout under	er uniaxial		
		tension	37		
	3.6.2	Failure behaviour of composite laminates with cutout under	r uniaxial		
		tension	38		
	3.6.3	Failure behaviour of composite laminates without cutout und	ler biaxial		
		tension	40		
	3.6.4	Failure behaviour of composite laminates with cutout und	er biaxial		
		tension	41		
СНА	PTER I	FOUR RESULTS AND DISCUSSION	43		
4.1	Introd	uction	43		
4.2	Results of Mesh Convergence Analysis				
	4.2.1	Composite laminate without cutout	44		
	4.2.2	Composite laminate with cutout	45		
4.3	Results of Numerical Validation				
	4.3.1	Composite laminate without cutout	48		
	4.3.2	Composite laminate with cutout	50		
4.4	Failure behaviour of composite laminates without cutout under uniaxial tension				
			51		
	4.4.1	Effect of various materials	51		