UNIVERSITI TEKNOLOGI MARA

EVALUATION OF PHYSICOCHEMICAL, PHYTOCHEMICAL, ANTIOXIDANT AND CAROTENOID PROPERTIES OF WATERMELON Citrullus lanatus JUICE AT DIFFERENT STORAGE TEMPERATURES AND TREATMENTS

NUR SHAFINAZ BINTI MOHAMAD SALIN

Thesis submitted in fulfilment of the requirement for the degree of Master of Health Sciences (Medical Laboratory Technology)

Faculty of Health Sciences

October 2022

ABSTRACT

Watermelon (Citrullus lanatus) is a perishable fruit with significant phytochemicals, carotenoids and antioxidant properties that are beneficial to human health. Due to convenience, majority of the individuals prefer to consume watermelon in juice form. In this study, watermelon juice was treated and stored at room temperature (25°C), refrigerator cold (4°C), refrigerator freeze (-8°C) and freeze-dried, and were analyzed on day 1, day 3, day 5, day 7 and day 9 on the juice physicochemical, phytochemical, antioxidant and carotenoid quantification. The results demonstrated significant changes between storage (B) and within day (W) analysis on watermelon juices quality during 9 days of storage, with the changes of juice physicochemical in weight loss (B: p=0.010; W: p=0.000), pH (B: p=0.005; W: p=0.001), ash content (B: p=0.043; W: p=0.000), moisture content (B: p=0.001; W: p=0.005), total soluble solid (B: p=0.000; W: p=0.001), browning (B: p=0.010; W: p=0.023) and turbidity (B: p=0.005; W: p=0.000), phytochemical content of total phenolic (B: p=0.002; W: p=0.001) and total flavonoid (B: p=0.002; W: p=0.000), antioxidant scavenging activities using 2,2-1-diphenyl-1picrylhydrazyl (DPPH) (B: p=0.000; W: p=0.023) and quantification of carotenoids; lycopene (B: p=0.000; W: p=0.005) and β -carotene (B: p=0.002; W: p=0.000) using high-performance liquid chromatography (HPLC). Watermelon juice undergo degradation of its nutritional values and reduces juice quality during 9 days of storage. Hence, the consumption of fresh juice is recommended for watermelon's benefits.

ACKNOWLEDGEMENT

A highly express my grateful towards Allah S.W.T, The most Gracious and Most Merciful. Who gave me strength, patience and guidance in completing my master research project. Salam and Salawat to the Prophet Muhammad . It was a great pleasure to acknowledge everyone who always being there for me in completing this research.

First and foremost, I would like to express my gratitude to my supervisor, Prof Madya Dr. Wan Mazlina Md Saad, co-supervisor, Prof Madya Dr. Hairil Rashmizal Abdul Razak and Dr. Fatimah Salim whose expertise, understanding, encourage, advice and always give valuable guidance and support towards the successful completion of my study.

A special acknowledgement for my family - my parents; Mohamad Salin Bin Yusof, Noor Azizah Binti Ahmad, my brothers; Mohamad Saufi, Mohamad Khairul Saidi, my sisters; Norfarhana, Nurul Fatehah, my nieces; Mohamad Habeeb Hafiy, Mohamad Hud Hanaqi, Natrah Syazreena Athirah Mohamad Khalish, and special thanks also mentioned to Nik Suhazri Amrin, for their support and encouragement to me towards facing the challenging life. Thank you for the endless love and kept me going. This achievement would not have been possible without them.

My accomplishment of this master project could not be accomplished without the support from my colleagues; Adiez Sapura, Shahirah, Humayoon and Azizah Munirah. Thank you for the theoretical and practical sharing of knowledge, skills and venting of frustration during conducting the research. The experienced will become memories for me to be cherished.

My sincere thanks to Miss Kathlene, Miss Suhaidah, Mrs Nurajulei, Mrs Masmadianty, Mrs Aisyah and Miss Salina from Universiti Teknologi MARA (UiTM), Mr Izwan and Mr Amir from Forest Research Institute of Malaysia (FRIM) and postgraduate students for their helped and assistant while conducting this research.

Finally, my honest appreciation also goes to all my lecturers, friends and those who have been directly and indirectly contributed in accomplishing my master research project.

TABLE OF CONTENT

			Page
CO	NFIRMA	ATION BY PANEL EXAMINER	i
AUT	THORS !	DECLARATION	ii
ABS	TRACT		iii
ACI	KNOWL	EDGEMENT	iV
TAE	BLE OF	CONTENT	V
LIST	Γ OF TA	ABLES	iX
LIST	Γ OF FI	GURES	XiV
LIST	Γ OF SY	MBOLS	XViii
LIST	Γ OF AE	BBREVIATIONS	XX
LIST	XXii		
CHA	APTER (ONE: INTRODUCTION	1
1.1	Backg	ground of Study	1
1.2	Proble	em Statement	4
1.3	Resea	rch Objective	6
1.4	Resea	rch Hypothesis	6
1.5	Scope	8	
1.6	Signit	ficance of Study	9
СНА	APTER '	TWO: LITERATURE REVIEW	11
2.1	Water	11	
	2.1.1	Classification of Watermelon	12
	2.1.2	Morphological of Watermelon	13
	2.1.3	Nutritional Composition of Watermelon	14
	2.1.4	Pharmacological Properties of Watermelon	17
	2.1.5	Watermelon Consumption	18
	2.1.6	Watermelon Fruit Treatment and Storage	19
	2.1.7	Physicochemical Analysis	20
2.2	Phyto	22	

	2.2.1	Phenolic Compound	23
		2.2.1.1 Biosynthesis of Phenolic Compound	25
	2.2.2	Flavonoid Compound	26
		2.2.2.1 Biosynthesis of Flavonoid Compound	28
	2.2.3	Carotenoid Compound	29
		2.2.3.1 Lycopene	31
		2.2.3.2 Physical and Chemical Properties of Lycopene	32
		2.2.3.3 Sources of Lycopene	33
		2.2.3.4 Lycopene in Health and Disease	34
		2.2.3.5 β -carotene	35
		2.2.3.6 Physical and Chemical Properties of β -carotene	35
		2.2.3.7 Sources of β -carotene	36
		2.2.3.8 β -carotene in Health and Disease	37
	2.2.4	Phytochemical Changes During Fruit Storage	37
	2.2.5	Analytical Detection of Phytochemical	39
		2.2.5.1 Total Phenolic Content (TPC)	40
		2.2.5.2 Total Flavonoid Content (TFC)	40
		2.2.5.3 High-performance Liquid Chromatography for	41
		Identification of Carotenoid	
2.3	Antioxidant		
	2.3.1	Sources of Antioxidant	43
	2.3.2	Mechanism of Antioxidant	44
	2.3.3	Role of Dietary Nutrient Enriched Antioxidant	46
	2.3.4	Antioxidant Changes During Fruit Storage	47
	2.3.5	Analytical Detection of Antioxidant	47
СНА	PTER T	ГНREE: METHODOLOGY	49
3.1	Materials		
	3.1.1	Chemicals	49
	3.1.2	Instruments and Equipment	51
3.2	Metho	ods	53
3.2.1	Study Design		53
3.2.2	Watermelon Collection		55