UNIVERSITI TEKNOLOGI MARA

A FRAMEWORK OF COUPLED FEM SIMULATION FOR FATIGUE CRACK ASSESSMENT OF WELDED HIGH STRENGTH LOW ALLOY S460G2+M STEEL BASED ON LINEAR ELASTIC FRACTURE MECHANICS

YUSUF OLANREWAJU BUSARI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Mechanical Engineering)

Faculty of Mechanical Engineering

June 2022

ABSTRACT

This thesis aims to develop sequential thermo-mechanical models and transfer the nonlinear welding simulation results as pre-state condition data into fatigue crack propagation prediction model of offshore steel high strength low alloy (HSLA) S460 G2+M using finite element method (FEM), which is contrary to prior studies that applies the consequence of previous state indirectly on the model by superposition or even neglects it. The first section presents the verification study using the robotic gas metal arc welding (GMAW) procedure based on AWS D1.1 to develop welding procedure specification (WPS) with 10mm thickness of three layers V-groove buttweld prior to the process of fatigue crack growth experiment. The microstructures of each weld zones of specimen were observed and compared. The second section represents the three-dimensional thermomechanical simulation analysis for GMAW process in which the multiphysics software and the thermodynamic as well as physical property for material modelling is computed to determine the material data of HSLA S460G2+M steel and ER 80S-Ni1 filler wire based on the chemical composition. The von Mises yield criterion and associated flow rule with isotropic hardening model were used to characterize the mechanical behaviour. In order to estimate transient thermal cycle and weld deformation, proper meshing strategy is analysed by comparing the widely acceptable hexahedral meshing against the tetrahedral with stiffness challenge in meshing for non-linear simulation. Third section describes the linear elastic fracture mechanics with eccentrically loaded single-edge tension specimen for crack growth analyses employed at the base, heat affected and fusion zone failure mechanism. The fourth section analyses the stress intensity with energy release rate using FEM- based virtual crack closure technique (VCCT). Singular enrichment with mesh geometry at nodes conforming to the crack front have been proposed with adaptive remeshing tools. Lastly, fatigue crack parameters of base material were used to predict the fatigue crack growth at the weld and heat affected zone (HAZ) by adding the effects of induced weld stress model. The structural analysis prediction with each fatigue crack parameter for each specimen and the coupled process using FEM were analysed and compared with the experiment. The outcomes of the research conclude that excellent correlation of destructive and non-destructive results showed accuracy and repeatability of the WPS process qualitatively. The tetrahedral meshing strategy shows good agreement towards weld deformation results compared to the experiment. For both numerical methods of VCCT only and coupled process, the mean relative percentage errors of load cycles were within 6.57% and 11.96% for HAZ. Meanwhile, the mean relative percentage error at weld zone was between 6.38% and 11.10% respectively. It results also show that the application of coupled process provides a potential to predict the fatigue crack growth of weld steel with acceptable percentage error.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Professor Ir. Ts. Dr-Ing. Yupiter Harangan Prasada Manurung CEng. For his belief in me, impeccable guidance, encouragement and wealth of knowledge that has made my PhD journey a huge success. Your kind but firm and helpful criticisms in every role are highly appreciated. You have indeed touched me, I am grateful for mentorship and privilege.

My appreciation goes to my Co-supervisor, Professor Ir. Dr. Shahrum Abdullah and Encik. Nazir Lodin, the technical staff of integration of material Lab at Universiti Kebangsaan Malaysia (UKM) for providing facilities and assistance during sampling of fatigue crack growth. I am grateful to my other Co-supervisor, Dr. Wan Emri Wan Abdul Rahaman.

I appreciate the fruitful cooperation of Montanuniversität Leoben and Professor Martin Leitner of Technische Universität Graz, Austria for all your assistance and support. Also, I am indebted to Dr-Ing. Andre Haelsig (TU Chemnitz, Germany) for giving constructive comments on welding procedure subject.

I thank all technical staff of School of Mechanical Engineering particularly, Advance Manufacturing Lab Staff and my colleagues at Smart Manufacturing Research Institute (SMRI) for the collaborative relationship which I am hoping this last for many years.

It was a challenging time for my family. I wish to thank my wife Tawakaltu Temitayo and my children Muzzammil and Salma, your enduring time are valued. They stood by me through all my travails, my absence and my fits of pique. My wife also supported the family during much of my graduate studies.

Finally, this thesis is dedicated to my Siblings and Parents; Hajia Sarat Ayoka and Alh. Abdulsalam Oba Busari for their vision and determination to educate me. This piece of victory is dedicated to you all. Alhamdulillah

TABLE OF CONTENTS

CONI	FIRMA	TION BY PANEL OF EXAMINERS	ii		
AUTH	IOR'S	DECLARATION	iii		
ABSTRACT					
ACKNOWLEDGEMENT					
TABLE OF CONTENTS					
LIST OF TABLES					
LIST	OF FIC	GURES	xi		
LIST	xvi				
LIST	xviii				
LIST	OF NO	MENCLATURE	XX		
CHAI	PTER C	ONE INTRODUCTION	21		
1.1	Resear	ch Background	21		
1.2	Motiva	ation	23		
1.3	Problem Statement				
1.4	Objectives				
1.5	Scope and Limitation 2				
1.6	Signifi	cance of Study	26		
CHAI	PTER T	WO LITERATURE REVIEW	28		
2.1	Develo	opment of High Strength Structural Steel	28		
	2.1.1	Production Routes of HSS	28		
	2.1.2	Classification of HSLA	30		
	2.1.3	Advantage of HSLA	31		
2.2	Gas M	Gas Metal Arc Welding (GMAW) 3			
2.3	Implic	Implication of Welded High Strength low alloy (HSLA) Steel on its Structure			
	Integrity				
	2.3.1	Weld Metallurgy of HSLA Steel	34		
	2.3.2	Thermo-mechanical Response of Welded HSLA steel	36		

2.4	Welding Procedure Specification (WPS)			
	2.4.1	Preliminary Welding Procedures Specification (pWPS)	39	
	2.4.2	Weld Procedure Qualification Record (WPQR)	40	
	2.4.3	Standard Tests	40	
	2.4.4	Process Variable for WPS Development Based on AWS D.1.1.	45	
2.5	Fatigue Strength Assessment of Welded Joint Using Fracture Mechanics			
	2.5.1	Linear Elastic Fracture Mechanics	48	
	2.5.2	Mode of Loading (Crack opening)	51	
	2.5.3	Fatigue Crack Growth Rate Analysis for Welded Structural Steel	51	
2.6	Numerical Computation for Welding and Fatigue Crack Growth Analysis			
	2.6.1	Gas Metal Arc Welding with Finite Element Method	59	
	2.6.2	Thermomechanical Analysis	59	
	2.6.3	Strain Energy Release Modelling with LEFM Parameter for FEM	70	
	2.6.4	Numerical Analysis of Coupled Welding - Fatigue Crack Growth	73	
2.7	Resea	rch Gap	74	
СНА	PTER '	THREE RESEARCH METHODOLOGY	77	
3.1	Introd	luction	77	
3.2	Mater	ial and Welding Process	78	
	3.2.1	Base Material	78	
	3.2.2	Welding Consumables: Filler Wire and Shielding Gas	79	
	3.2.3	Welding Equipment	81	
3.3	Development Process of Welding Procedure Specification (WPS)			
	3.3.1	Evolution of Preliminary Welding Procedure Specification (pWPS)	83	
	3.3.2	Automated Welding Process of WPS Test Plate	85	
	3.3.3	Procedure Qualification Record (PQR)	89	
	3.3.4	Establishment of Welding Procedure Specification	97	
3.4	Welding of the 10mm HSLA Steel Plate			
	3.4.1	Distortion Investigation	98	
	3.4.2	Residual Stress Investigation	99	
3.5	Numerical Computational Analysis			
	3.5.1	FEM Thermo-mechanical Analysis	99	
	3.5.2	FEM Modelling and Procedure of Multi-Pass Welding	100	
	3.5.3	Heat Source Model	108	
		vii		