UNIVERSITI TEKNOLOGI MARA

SUPERCAPACITOR AND DYE-SENSITIZED SOLAR CELL BASED ON QUASI-SOLID STATE POLYMER ELECTROLYTE AND IRON COBALTITE ELECTRODE

FARISH IRFAL BIN SAAID

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Science)

Faculty of Applied Sciences

June 2022

ABSTRACT

Electrochemical devices based on liquid electrolytes are known to have high performance. However, problems associated with liquid electrolytes are electrolyte leakage, volatilization and corrosion of the electrode. The quasi-solid state polymer electrolytes (QSSPEs) are used in these devices to overcome the shortcomings of liquid electrolytes. In this work, the QSSPEs were used in both supercapacitor and dyesensitized solar cells (DSSCs). For supercapacitor, a typical QSSPE was prepared by incorporating 0.4 g polyvinyl alcohol (PVA) in a 2 M potassium hydroxide (KOH) dissolved in distilled water. Whereas for DSSC, an optimize QSSPE was prepared by incorporating poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) in a propylene carbonate (PC) / 1,2-dimethoxyethane (DME) / 1-methyl-3propylimidazolium iodide (MPII) liquid electrolyte. The semi-crystalline PVdF-HFP was used as a gelling agent because crystalline VdF provides mechanical strength to the electrolyte, whereas the amorphous HFP entraps the liquid electrolyte. Conductivity decreases gradually with increasing PVdF-HFP from 1.3×10^{-2} to 2.0×10^{-3} S cm⁻¹ due to decreased ion mobility. No-flow "jelly-like" electrolyte samples were obtained for PVdF-HFP ≥ 0.2 g. The fabricated DSSC without PVdF-HFP shows higher efficiency than DSSCs with PVdF-HFP. The presence of PVdF-HFP deteriorates the performance of DSSCs, but problems associated with liquid electrolytes are eliminated. Presence of sodium iodide (NaI), 4-tert-butylpyridine (TBP) and guanidine thiocyanate (GuSCN) further increases the efficiency of DSSCs. Apart from electrolytes, electrodes also play a significant role in electrochemical devices. Platinum (Pt) is an expensive material commonly used as a counter electrode in DSSC. Commercial supercapacitors are commonly made from carbonaceous materials and they generally exhibit low specific capacitance (C_{sp}) . Therefore, in this works, iron cobaltite (FeCo₂O₄) has been explored as an alternative material for the counter electrode in DSSC and cathode in supercapacitor. FeCo₂O₄, iron oxide (α -Fe₂O₃) and cobalt oxide (Co₃O₄) were synthesized by a simple hydrothermal process. Field-emission scanning electron microscope (FESEM) images show that Fe₂O₃ and Co₃O₄ exhibit different morphology even though they were synthesized via a similar method. The electrochemical properties of the α -Fe₂O₃, Co₃O₄ and FeCo₂O₄ electrodes were obtained in a 6 M KOH electrolyte solution. The FeCo₂O₄ electrode has the highest C_{sp} , followed by Co₃O₄ and α -Fe₂O₃. The highest C_{sp} of FeCo₂O₄ is because of its large nanosheets morphology, better transportation of ions through its expanded crystal structure, and weak crystallinity, which facilitates the intercalation of ions. By varying the duration of hydrothermal reaction, four different FeCo₂O₄ structures, namely nanoneedles, nanorods, nanosheets and microcubes, have been obtained. The morphological evolution of $FeCo_2O_4$ is wellexplained based on FESEM and high-resolution transmission electron microscopy (HRTEM) analysis. The FeCo₂O₄ nanosheets have the highest C_{sp} , followed by nanorods, nanoneedles and microcubes. The highest Csp of FeCo2O4 nanosheets is attributed to its highest specific surface area and porosity. A solid-state asymmetric FeCo₂O₄ nanosheets / PVA-KOH / reduced graphene oxide (rGO) supercapacitor was fabricated. The supercapacitor exhibits a maximum power density of 3202 W kg⁻¹ and a maximum energy density of 24.5 Wh kg⁻¹. It demonstrates 70% capacitance retention after 3000 cycles. The optimised PVdF-HFP QSSPEs were assembled into DSSCs with FeCo₂O₄ nanosheets as the counter electrodes. It shows an efficiency of 6.04 %.

ACKNOWLEDGEMENT

Firstly, Alhamdulillah, I wish to thank God for giving me the opportunity to embark on my PhD and for completing this long and challenging journey successfully.

My deepest appreciation and sincere thanks, goes to my supervisor, Prof. Ts. Dr. Tan Winie on her advice, encouragement, help and care in executing this research. Guidance and insight provided by my supervisor helped to the success of this thesis. A million thanks to my co-supervisor Prof. Dr. Tseung-Yuen Tseng for teaching and helping me in my research attachment in National Chiao Tung University, Taiwan.

My appreciation goes to the Institute of Sciences (IOS) and Faculty of Applied Sciences (FSG) staff members who provided the facilities and assistance during sampling. Special thanks to my colleagues and friends for helping me with this project.

Finally, I wish to express gratitude sustainable utmost appreciation to my beloved family members, especially my parents and wife above all sacrifices, encouragement and enthusiasm that was given to me during the period of study.

TABLE OF CONTENTS

P	a	ge
---	---	----

CON	FIRMA	TION BY PANEL OF EXAMINERS	ii
AUT	HOR'S	DECLARATION	iii
ABS	ГКАСТ		iv
ACK	NOWL	EDGEMENT	v
TAB	LE OF (CONTENTS	vi
LIST	OF TA	BLES	X
LIST	OF FIC	GURES	xii
LIST	OF SY	MBOLS	xix
LIST	OF AB	BREVIATIONS	xxii
СНА	PTER (ONE INTRODUCTION	1
1.1	Resear	rch Background	1
1.2	Proble	em Statement	2
1.3	Signifi	icance of Research	4
1.4	Object	tives	4
1.5	Scope	of Research	5
1.6	Thesis	Outline	6
СНА	PTER 1	IWO LITERATURE REVIEW	7
2.1	Introd	uction	7
2.2	Struct	ure and Mechanism of Supercapacitors	9
2.3	Struct	ure and Mechanism of Dye-Sensitized Solar Cells (DSSCs)	13
2.4	Transi	tion Metal Oxides as Electrode Materials	15
	2.4.1	Single vs Mixed Transition Metal oxides	16
	2.4.2	Synthesis of Transition Metal Oxides	18
	2.4.3	Transition Metal Oxides with Various Nanostructures, Synthese	sised via
		Hydro/Solvothermal Method	28
2.5	Applic	cation of Transition Metal Oxides in Supercapacitor and DSSC	37
2.6	Electro	olytes	41
		vi	

2.6.1	Electrolytes for Supercapacitors	41
2.6.2	Electrolytes for DSSCs	47

CHAPTER THREE PREPARATION AND CHARACTERIZATION OF PVDF-**HFP/PC/DME/MPII QUASI-SOLID-STATE ELECTROLYTE** FOR **APPLICATION IN DSSC** 49 49 3.1 Introduction 3.2 Experimental 50 3.2.1 Materials 50 3.2.2 Sample Preparation for ATR-FTIR Studies 50 3.2.3 Preparation and Characterization of Liquid Electrolyte 51 3.2.4 Preparation and Characterization of QSSPEs 52 3.2.5 DSSC Fabrication and Characterization 54

3.3	Result	is and Discussion	55
	3.3.1	FTIR studies	55
	3.3.2	Conductivity Studies of Liquid Electrolyte	74
	3.3.3	Quasi-solid-state polymer electrolyte (QSSPE)	78
3.4	Concl	usion	95

CHAPTER FOUR PREPARATION AND **CHARACTERIZATION** OF **COBALT IRON-BASED SINGLE OXIDE AND MIXED OXIDE ELECTRODE MATERIALS** 96 4.1 Introduction 96 4.2 Experimental 97 97 4.2.1 Chemicals and Materials 97 4.2.2 Synthesis of Fe₂O₃

4.2.3	Synthesis of Co ₃ O ₄	98
4.2.4	Synthesis of FeCo ₂ O ₄	99
4.2.5	Synthesis of Graphene Oxide (GO)	99
4.2.6	Preparation of FeCo ₂ O ₄ and GO Electrodes	100
4.2.7	Materials Characterization	100
4.2.8	Fabrication of Asymmetric FeCo ₂ O ₄ /KOH/GO Supercapacitor	101
4.2.9	Electrochemical Measurements	101