
Mathematical Sciences and Informatics Journal
Vol. 3, No. 2, Nov. 2022, pp. 80-92
http://www.mijuitmjournal.com DOI: 10.24191/mij.v3i2.20290

This is an open access article under a Creative CommonsAttribution-
ShareAlike4.0 International License (CC BY-SA 4.0).

Lucene Search Engine Development: A Beginner’s Experience

Azilawati Azizan
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perak Branch Tapah Campus,

Perak, Malaysia
azila899@uitm.edu.my

 Najwa Izzah Najihah Mohd Sanusi

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perak Branch Tapah Campus,
Perak, Malaysia

2017769845@isiswa.uitm.edu.my

Nurkhairizan Khairuddin

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perak Branch Tapah Campus,
Perak, Malaysia

nurkh098@uitm.edu.my

Ana Salwa Shafie
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Pahang Branch Jengka

Campus, Pahang, Malaysia
anas674@uitm.edu.my

Article Info ABSTRACT
Article history:

Received Aug 31, 2022
Revised Sept 25, 2022
Accepted Nov 5, 2022

 Lucene provides a basic library package for building a complete text-
based search engine. It can be used in various ways to benefit both
researchers and users. However, for a beginner, to create a search
engine utilizing Lucene, require a thorough understanding of the
procedures and library packages. Therefore, this project seeks to
explore and demonstrate the development of a search engine by
employing the Malay Quran translation text as the dataset for testing
purposes. This project applied the fundamental Information Retrieval
(IR) model as the main methodology for developing the search engine.
Apache Lucene framework, a full-text search engine library which is
written in JAVA was used to construct the whole search engine
components namely the indexer, searcher, query processor, and
ranker. Then, the developed search engine was evaluated using a
standard IR measurement, where it achieved 67% of precision and
32% recall value. This paper provides a basic approach to developing
a text-based search engine that can be used for any IR testing
purposes. The result of this project may also benefit the IR community
in comparing the retrieval performance.

Keywords:

Search Engine
Lucene
Quran Translation
Information Retrieval
Precision Recall

Corresponding Author:
Azilawati Azizan
Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perak branch Tapah Campus
email: azila899@uitm.edu.my

1. Introduction

Search engine is an application under the field on Information Retrieval (IR) which is defined
as a process of obtaining information resources that are relevant to the information need from a
collection [1]. Basically, search engine application can be divided into two, namely a standalone
search system and a web search system (or better known as a web search engine). General or
commercial web search engines like Google or Bing are the most widely used by the web users
today. These search engines are actively used all around the world to retrieve necessary information,
documents, journals, images, recipes, reviews and etcetera. Most of the search engines like Google,
Bing and other popular search engines provide advance function of searching. They might use
different types of techniques or methods to increase their performance and relevancy in their search
results.

81

Those search engines are certainly based on the fundamental IR model which commonly
involves several major processes such as crawling, indexing, matching, ranking and query
processing [2]. All of these major processes are vital for a search engine to function and operate
effectively [3]. To construct any of these major processes, a significant amount of knowledge is
needed. Hence, it is crucial to comprehend and grasp the knowledge on developing each process
very well.

However, a lot of search engine development works have been eased by the Apache Lucene
framework, which contains all the necessary development libraries [4]. Yet, beginners may still find
it challenging to comprehend, use and apply it. Therefore this paper aims to share the experience of
developing a search engine using the Apache Lucene framework from a beginner's perspective by
demonstrating each activity step-by-step. In addition to that, a Malay Quran translation dataset that
focuses on Juzuk Amma was created for the purpose of testing the search engine.

2. Literature Review

Lucene is a powerful, full-featured text search engine library written entirely in JAVA. It
makes it simple to include full-text search into any application [5]. It is free to download and it is an
open source JAVA-based search framework that offers Application Programming Interfaces (API) for
carrying out typical search and search-related tasks like indexing, querying, highlighting, language
analysis, and many others.

The Lucene project was originally a one-person initiative but it has experienced a substantial
transformation over the years to become one of the top search solutions nowadays [6] . Literally, it
was initially created in 1997 by Doug Cutting as a way to learn JAVA, and in 2001, Doug Cutting
contributed it to the Apache Software Foundation (ASF). Until now, the Apache Software Foundation
team of contributors and committers has been in charge of maintaining Lucene under the Apache
Software License version 2 [6]

In recent years, Lucene has become exceptionally popular and is now the most widely used
in IR applications [7]. As of this writing, Lucene‘s core JAR has more than 100 official releases
encompassing major and minor and patch releases, and the file size is mostly less than 50Mb.
Lucene has produced many search-based services, including Solr and Elasticsearch [8]. It drives the
search capabilities behind many websites and desktop applications, mobile applications, and in many
IR research purposes as well. Many of today's most well-known websites, applications and devices,
such as Twitter, Netflix, Instagram, LinkedIn and Bloomberg [6] as well as many other search-based
applications are powered by Lucene [9].

In addition to Lucene, there are other several open-source search engines with various
feature sets, performance traits, and software licensing arrangements. For example the Indri toolkit
from the Lemur Project, focuses on language modeling and information retrieval [10]. Following that
is Terrier IR, an open-source research and experimentation toolkit that supports a wide range of IR
models [11]. Then there's Xapian, a portable IR library created in the C++ programming language
that supports probabilistic retrieval models [12].

3. Methodology and Implementation
The architecture of the search engine for this project is illustrated in Figure 1. It shows how

the search engine works. It is based on the fundamental IR model. When a user submits its query
via the search engine interface, the query will be processed and matched with the related terms in
the index files. The index file was created in earlier stage before the user can use the search engine.
It is created by performing the indexing process using the data collection from the dataset which
contain the Quran translation text. After the matching process complete, the search engine will rank
the search results and present it on the search engine result page (SERP) to the user. There are
three major stages to completing the project. The stages are as below:

1. Dataset creation - Malay Quran translation of Juzuk Amma
2. Search engine development using Apache Lucene
3. Testing and evaluation using Precision & Recall

82

Figure 1. The search engine architecture

A more thorough breakdown of all the activities performed at each stage is described in the

next section.

3.1 Dataset Creation - Malay Quran Translation of Juzuk Amma

Firstly, a dataset is needed which will be used for developing the index file and testing
purposes. Hence, a Malay Quran translation text was chosen to be the dataset in this project.
Statistically, Quran has around 78 thousand words and is grouped into verses. Then, a set of verses
are grouped into parts, chapters and Hizb quarter. The Quran has 114 chapters (Surahs), 30 Parts
(Juzuk), 60 groups (Hizb) and 6236 verses respectively [13]. Meanwhile, Quran translation is the
translation of Quran verses in the Arabic language into other languages such as Malay, English,
French and others. This translation may assist those who are not familiar with the main language of
the Quran which is the Arabic language.

Due to the time limitation of the project, only Juzuk Amma translation text was chosen for the
development of the dataset. It is chosen because it is the chapter that is commonly used by many
Muslims in their prayer recitations. Juzuk Amma is also widely used for educational purposes such
as memorizing or reciting the Surah. Figure 2 shows the Quran translation book that was used as
the main source for the creation of the dataset.

Figure 2. Quran translation in Malay language

(Source: Al-Quran Tajwid dan Terjemahan Humaira)

83

The chosen translations were documented in textual form in a txt file format. The
documentation of the translation text has taken almost one and half months to complete. There are
37 surah in Juzuk Amma. All the surah is then separated according to the number of verse in the
surah respectively. Figure 3 shows the example of the data that being stored in the dataset.

Figure 3. Data collection - surah Abasa, first verse

A total of 561 text files (txt files) were created for the data collection. It is the total number of

Quran verses for all 37 surahs in the Juzuk Amma. All the documented translation text files were
saved and compiled which will be used in a later stage of the development.

3.2 Search Engine Development Using Apache Lucene

This project employed the Apache Lucene framework. It provides a complete library for all
basic processes in a search engine to work. The commonly used are the query parser, indexer,
searcher and ranker library. In order to start using it, several installations and setups need to be
prepared beforehand such as:

 JAVA Development Kit (JDK) – obtained it from the Oracle’s JAVA website

(https://www.oracle.com/JAVA/technologies/downloads/)

 Eclipse IDE – obtained it from the Eclipse Foundation website
(https://www.eclipse.org/downloads/)

 Apache Lucene Libraries – obtained it from the Apache archive
(https://archive.apache.org/dist/lucene/JAVA/)

Step 1: Setup for JAVA Development Kit (JDK)

The JDK is a JAVA SE Downloads version of the SDK from Oracle's JAVA site. The
installation of JDK is completed by following the JDK installation instructions and configuration. Then
the PATH and JAVA_HOME environment variables that refer to the directory which contains JAVA
and JAVAc, typically JAVA_install_dir/bin and JAVA_install_dir were respectively set.

Step 2: Setup for Integrated Development Environment (IDE) – Eclipse

The latest version of Eclipse binaries was downloaded from its official website. The binary
distribution was unpacked into a convenient location and the PATH variable was set appropriately.
Eclipse IDE is used to compile and run the JAVA application.

Step 3: Setup for Lucene Framework Libraries

As for the beginner, this project uses the earlier version of Lucene which is 3.6.2. This version
is the most stable and versatile. This was suggested by various guides for Lucene’s newbie. After
unzipping the file, the directory structure is as in Figure 4.

84

Figure 4. Lucene framework libraries version 3.6.2

After all the setups are completed, the construction of the search engine using the Lucene

library starts with the creation of the JAVA project.

Step 4: Creating the JAVA Project

A JAVA project was created, and it is named as ‘LuceneProject’ using the wizard provided
in Eclipse IDE. Figure 5 shows the wizard window of ‘LuceneProject’ in the Eclipse IDE application.
Then the following content as in Figure 6 appeared in the Project Explorer tab, which indicates the
project is successfully created.

Figure 5. ‘LuceneProject’ JAVA project

Figure 6. Project Explorer content

85

Step 5: Adding the Libraries
Then, the Lucene core framework library was added into the ‘LuceneProject’. The insertion

of the Lucene core framework library is performed by setting up the build path in JAVA Build Path
from the Lucene installation directory within Eclipse IDE. Figure 7 shows JAVA Build Path for adding
the library to the project.

Figure 7. JAVA Build Path window

Step 6: Creating the Classes

Next is the step for creating the classes under the ‘LuceneProject’ project. Firstly, a package
is created and then several JAVA classes were created under this package that is the
LuceneConstant.JAVA, TextFileFilter.JAVA, Indexer.JAVA, Searcher.JAVA and
LuceneTester.JAVA.

i. LuceneConstant.JAVA

This JAVA class enables the use of various constants across the project. The constants are
CONTENTS, FILE_NAME, FILE_PATH and MAX_SEARCH which represent the file of contents, the
name of the file together with the path and also the number of retrieved documents whenever
searching is done. Figure 8 shows the sample of code in LuceneConstants.JAVA.

Figure 8. LuceneConstants.JAVA codes

ii. TextFileFilter.JAVA

Next is the text filter class which is used to filter the text file. Figure 9 illustrates the sample
codes of TextFileFilter.JAVA.

86

Figure 9.TextFileFilter.JAVA codes

iii. Indexer.JAVA

Indexing process is the primary functionalities offered by Lucene [6]. For beginner, it is the
most challenging part to understand the flow and the technique used to create and perform the
indexing. Basically, this Indexer.JAVA class is used to index the raw data so that the data is
searchable using the Lucene library.

Literally, the process for creating index and getting all files in the data directory is performed
in this class. It has 5 other classes in it such as the IndexWriter.JAVA, Directory.JAVA,
Analyzer.JAVA, Document.JAVA and Field.JAVA. The process begins by collecting the document,
analyse it, and process it with IndexWriter.JAVA. The flow and sample of Indexer.JAVA codes are in
Figure 10.

Figure 10. Indexer.JAVA process flow and codes

iv. Searcher.JAVA

This class is used to locate the indexes created by the Indexer class that corresponds to the
user's query. It works whenever it accepts the query string from the user and analyse it using
QueryParser class. The Searcher.JAVA configures and instructs the indexSearcher to search the
index file for objects linked to the document file. As a result, the user will see the output of the
associated document. The Searcher.JAVA procedure is depicted in Figure 11.

87

Figure 11. Searcher.JAVA process flow and codes

v. LuceneTester.JAVA

LuceneTester.JAVA is a class that is use to test the indexing and search capability of Lucene
library. Basically, it is a class for displaying result of the search when user queries the search engine.
It will retrieve the desired information by processing the query string that is submitted by the user. It
obtains the data collection path directory and the number of files and displays it to the user if the
query string from the user matches the keyword in the index file. Figure 12 illustrates the process
flow and the LuceneTester.JAVA codes.

Figure 12. LuceneTester.JAVA process flow and codes

88

Step 7: Creating the Index File
The data collection for this project has 561 text files containing the verses of Juzuk Amma

translations. It is stored in the local drive of the computer, and the index directory is also created in
the same drive. Figure 13 shows the output messages in Eclipse IDE’s console when the application
runs successfully. When the indexer.JAVA is run, the index file list is created in the same folder drive
as shown in Figure 14.

Figure 13. Output in Eclipse IDE's console when the indexing process is completed

Figure 14. Index directory content

Step 8: Run the Application

The last step of the development is compiling and running the application. It is performed
once the construction of the classes, the data collection, the data directory and the index directory
are completed. It uses the LuceneTester.JAVA class to run the application. The user’s query string
is submitted to the application and the output is shown in Figure 15.

Figure 15. Output in Eclipse IDE's console when the application runs

89

3.3 Testing and evaluation Using Precision & Recall

Once the development is completed, a testing is conducted to evaluate the search engine
and its retrieval performance. 15 queries were used to test the search application. The queries are
as in Table 1.

Table 1. Test query
Query No Query String
Query 1 Tuhan
Query 2 Tuhan arasy
Query 3 demi waktu
Query 4 syurga tetap mengalir
Query 5 berpuas
Query 6 bersyukur
Query 7 tuhan mereka maha
Query 8 kitab
Query 9 Demi waktu dhuha sesungguhnya

Query 10 kafir musyrik makhluk jahat
Query 11 TUHAN
Query 12 bpuas
Query 13 bersama-sama
Query 14 bacalah
Query 15 Abasa

All the test queries were submitted to the search engine and the number of relevant and

irrelevant results was summed up. It is used to calculate the Precision and Recall value [14].
Precision and recall are the most common measurements used to evaluate retrieval performance for
any search application in IR [15]. Value for precision and recall can be calculated as in the equation
(1) and (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉(ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௗ௢௖௨௠௘௡௧ ௥௘௧௥௜௘௩௘ௗ)

ே(்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௗ௢௖௠௘௡௧ ௥௘௧௥௜௘௩௘ௗ)
 (1)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉(ே௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௧ ௗ௢௖௨௠௘௡௧ ௥௘௧௥௜௘௩௘ௗ)

ு(்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௟௘௩௔௡௖௘ ௗ௢௖௨௠௘௡௧)
 (2)

Precision is the ratio of the number of relevant document to the total number document being

retrieved. Meanwhile, recall is the ratio of the number of relevant document retrieved to the total
number of relevant document in the data collection. Figure 16 shows the obtained results.

Figure 16. Records for relevancy of results retrieved

90

Then precision-recall graph is then produced as in Figure 17. The graph indicates that when
more results are obtained, the number of relevant result drops. In addition, the graph also explains
that the top result obtained are the most relevant, and the lower the order of the results, the less
relevant the result is.

Figure 17. Precision-Recall graph

In average, the search engine scored 67% precision and 32% recall in the evaluation. It

means 67% of the search result given by the search engine is relevant, while only 32% of the relevant
results from the entire data collection were managed to retrieve successfully. The precision values
are generally acceptable, but the recall values are quite low. It is probable that this is due to the small
number of data collection. Taken into account the limitation of small data collection and mediocre
retrieval performance, this leaves more opportunity for future improvement.

4. Conclusion

This paper seeks to share the experience as a beginner in developing a search engine using
the Lucene framework. As a novice in the field of IR, building a search engine is a challenging task.
This is due to the fact that the search engine framework is fairly complex. It is made up of various
major processes such as indexing, query processing, matching, and ranking, where each process
has its own distinct technique. Fortunately, Apache Lucene provides the essential libraries for
developing a search engine. Many complicated coding techniques have been simplified. However,
in order to utilise the Lucene library correctly, a thorough understanding of the methodology,
architecture, and basic operation of a search engine is required.

Acknowledgements
The authors gladly acknowledged the student Najwa Izzah Najihah Mohd Sanusi, who developed
the application's prototype. Najwa Izzah Najihah Mohd Sanusi graduated in 2021 with a Degree in
Computer Science from the Faculty of Computer and Mathematical Sciences. Many thanks are also
extended to the Universiti Teknologi MARA (UiTM), Perak branch for providing full support in the
completion of this project.

Conflict of Interest
The authors declare no conflict of interest in the subject matter or materials discussed in this manuscript.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. ACM Press. Addison

Wesley, 1999.
[2] M. Alecci, T. Baldo, L. Martinelli, and E. Ziroldo, “Development of an IR system for argument

search,” CEUR Workshop Proc., vol. 2936, pp. 2302–2318, 2021.

91

[3] F. Kasmani, R. Maniyar, and M. Narvekar, “Content Based Search Engine for E-Books,” 2020
6th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2020, pp. 528–533, 2020.

[4] Z. Youzhuo, F. Yu, Z. Ruifeng, H. Shuqing, and W. Yi, “Research on Lucene Based Full-Text
Query Search Service for Smart Distribution System,” 2020 3rd Int. Conf. Artif. Intell. Big Data,
ICAIBD 2020, pp. 338–341, 2020.

[5] J. Lin, “A Prototype of Serverless Lucene,” 2020.
[6] A. Białecki, R. Muri, and G. Ingersoll, “Apache Lucene 4,” Proc. SIGIR 2012 Work. Open

Source Inf. Retr., pp. 17–24, 2012.
[7] M. M. Otis Gospodnetic, Erik Hatcher, Lucene in Action 2nd Edition, 2nd ed. Simon and

Schuster (Manning Publications), 2010.
[8] A. Grand, R. Muir, J. Ferenczi, and J. Lin, From MaxSCORE to block-max WAND: The story

of how lucene significantly improved query evaluation performance, vol. 12036 LNCS.
Springer International Publishing, 2020.

[9] P. Yang, H. Fang, and J. Lin, “Anserini: Enabling the Use of Lucene for Information Retrieval
Research,” J. Data Inf. Qual., vol. 10, no. 4, pp. 1–20, 2017.

[10] A. Y. Aldailamy, N. A. W. A. Hamid, and M. Abdulkarem, “Distributed indexing: Performance
analysis of solr, terrier and katta information retrievals,” Malaysian J. Comput. Sci., vol. 31,
no. 5, pp. 87–104, 2018.

[11] J. Lin et al., “Supporting Interoperability between Open-Source Search Engines with the
Common Index File Format,” SIGIR 2020 - Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf.
Retr., pp. 2149–2152, 2020.

[12] W. Iqbal, W. I. Malik, F. Bukhari, K. M. Almustafa, and Z. Nawaz, “Big data full-text search
index minimization using text summarization,” Inf. Technol. Control, vol. 50, no. 2, pp. 375–
389, 2021.

[13] M. Alhawarat, M. Hegazi, and A. Hilal, “Processing the Text of the Holy Quran : a Text Mining
Study,” vol. 6, no. 2, pp. 2–7, 2015.

[14] A. Azizan, Z. Abu Bakar, N. A. Rahman, S. Masrom, and N. Khairuddin, “A comparative
evaluation of search engines on finding specific domain information on the web,” Int. J. Eng.
Technol., vol. 7, no. 4, pp. 1–4, 2018.

[15] M. Agosti, G. Maria, D. Nunzio, and S. Marchesin, “An Analysis of Query Reformulation
Techniques for Precision Medicine,” in SIGIR, 2019, pp. 973–976.

Biography of all authors

 Picture Biography Authorship contribution

Dr. Azilawati Azizan is currently a senior
lecturer in the faculty of Computer &
Mathematical Sciences, UiTM Perak
Campus, Tapah Branch. She obtained her
PhD from UiTM Shah Alam Selangor in 2022.
Her areas of interest are in text processing,
query processing, and search engine. She
can be contacted at azila899@uitm.edu.my.

Designing and supervising the
project work and drafting
article.

Najwa Izzah Najihah Mohd Sanusi is
currently an alumni of Universiti Teknologi
MARA Perak Branch, Tapah Campus (UiTM
Perak). She was a student of Bachelor
Degree of Computer Sciences. Her main
research interests are in Information
Retireval and web development.

Developing and running the
prototype application and
conduct the testing for the
project work

92

Nurkhairizan Khairudin works as Senior
Lecturer at Universiti Teknologi MARA,
Department of Computer Science. She is
currently pursuing her study in PHD in
Intelligent System at Universiti Putra
Malaysia (UPM). She received Bachelor
Degrees in Computer Science and Msc in
Information Science from Universiti
Kebangsaan Malaysia Her main research
interest is in recommendation system and
neural network.

Advising the research, editing
and revise the article in the
scope of IR

Ana Salwa Shafie is a lecturer at UiTM
Pahang, Jengka Campus. She obtained both
her Bachelor and Master degree in Computer
Science at Universiti Teknologi Malaysia.
She has greater interest in sentiment
analysis, text processing, artificial
intelligence and machine learning.

Framework and final checking.

