FREE SPACE MICROWAVE CHARACTERIZATION OF Si WAFERS FOR MICROELECTRONIC APPLICATIONS

INSTITUTE OF RESEARCH, DEVELOPMENT AND COMMERCIALIZATION UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY

ASSOCIATE PROFESSOR DR. ZAIKI BIN AWANG

ASSOCIATE PROFESSOR DR. DEEPAK KUMAR GHODGAONKAR

NOOR HASIMAH BABA

JANUARY 2004

TABLE OF CONTENTS

Letter of Appointment	Ĩ
Research Group	ii
Acknowledgement	iii
List of Tables and Figures	iv

ABSTRACT	A	B	ST	R	A	C	Т
----------	---	---	----	---	---	---	---

1.0	INTRODUCTION	3
2.0	LITERATURE REVIEW	7
3.0	THEORY	11
	3.1 Theory of Microwaves	11
	3.2 Advantages and Disadvantages of Microwave Testing	11
	3.3 Electromagnetic Properties of Material	13
	3.3.1 Polarization	14
	3.3.2 Electromagnetic Field in Media	15
	3.3.3 Complex Permittivity	16
	3.3.4 Conductivity	18
	3.4 Propagation of Electromagnetic Waves in Media	19

3.4.1	Propagation of Electromagnetic Waves in			

Lossless Medium

1

		20
	Lossy Medium	
	3.5 Semiconductor Materials	22
	3.6 Crystal Structures and Orientation	24
	3.7 Doping In Semiconductor	25
	3.8 Silicon Wafer Processing	26
4.0	EXPERIMENTAL WORK	28
	4.1 Calculation of Complex Permittivity	28
	4.2 ABCD Matrix Parameters	32
	4.3 Comparison Between Theory and Experiment	35
	4.4 Material	39
	4.5 Measurement System	40
	4.6 Measurement Calibration	42
5.0	EXPERIMENTAL RESULTS AND DISCUSSION	44
	5.1 Verification Results	44
	5.2 Experimental Results	44
	5.3 Four-Point Probe Method	64
6.0	CONCLUSIONS	66

REFERENCES

ABSTRACT

A contactless and non-destructive microwave method has been developed to characterize silicon semiconductor wafers from reflection and transmission measurements made at normal incidence. Microwave non-destructive testing (MNDT) using free-space microwave measurement (FSMM) system involve measurement of reflection and transmission coefficients in free-space. The measurement system consists of a pair of spot-focusing horn lens antenna, mode transitions, coaxial cables and a vector network analyzer (VNA). The inaccuracies in free-space measurements are due to two main sources of errors. 1) Diffraction effects at the edges of the material specimen. 2) Multiple reflections between horn lens antennas and the sample. The spot-focusing antennas are used for minimizing diffraction effects and we have implemented free-space TRL calibration technique by establishing three standards, namely, a through connection, a short circuit connected to each port and a transmission line connected between the test ports. The TRL calibration is unable to fully correct for multiple reflections between the antennas and sample. Therefore, time domain gating feature of the VNA is used to eliminate multiple reflections.

In this method, the free-space reflection and transmission coefficients, S_{11} and S_{21} are measured for silicon wafer sandwiched between two Teflon plates of 5mm thickness which act as a quarter-wave transformer at mid-band. The actual reflection and transmission coefficient, S_{11} and S_{21} of the silicon wafers are then calculated from the measured S_{11} and S_{21} by using ABCD matrix transformation in which the complex permittivity and thickness of the Teflon plates are known. From the complex permittivity, the resistivity and conductivity can be obtained. Results for p-type and n-

1

type doped silicon wafers are reported in the frequency range of 11 - 12.5 GHz. The dielectric constant of silicon wafer obtained by this method agrees well with that measured in the same frequency range by other conventional method.