

ACKNOWLEDGEMENT

First of all I would like to express my gratitude to ALLAH Al-Mighty for giving me health and strength to complete this dissertation on

'THE MAINTENANCE METHOD OF KTMB RAILWAY TRACK' Thank You dedicated to my lecture;

En Mazlan Abu Bakar (MISM)

and

Pn Suliahti bt Hashim from;

Department of Building Surveying

Faculty of Architecture, Planning and Surveying,

UiTM Shah Alam.

The person who is responsible to supervise me from the beginning until the end of submission date.

Also special thank dedicated to;

En Ismail b Ibrahim	(Permanent Way Department)
En`Azwa b Azman	(Permanent Way Maintenance Division)
En Ali `b Hassan	(Permanent Way Maintenance Division)
En Ihsan b Salleh	(Human Resource Department)

For their kindly commitment, information given and also their help in understanding the study. To other especially my family, lovely person, classmate and all respondent for being cooperation and helps to achieve this dissertation.

Thank You,

Mohd Redzwan Musa 2002234664 10th May 2004

iii

ABSTRACT

KTM Komuter is one of the most important public transportation systems in Klang Valley. Its positioning placement needs to be exacting standards as affects the efficiency of movement for the KTM Komuter users. The title of this research is 'THE MAINTENANCE METHOD OF KTMB RAILWAY TRACK' covers a little bit on the aspect of Permanent Way or in other word railway track on maintenance management. Also involves the organization study and concerns the railway track performance which affects the KTM Komuter effectiveness. The study conducted is to analyze the improvement maintenance management or permanent way of KTM Berhad. This is done by conducting an extensive research to determine the categories of railway track system and also the methodology of facilities management associated with KTM Komuter services. The research findings will also include an analysis of arising problems associated to the existing railway track system. Strategies are also suggested and concluded at the end of the overall research as a guide to the management staff of the railway track system. This is so, that re-analysis of current procedures can be done and constructive changes can be made in conjunction with on going facility management practices for an optimal utilization of current KTM Komuter services.

TABLE OF CONTENTS

APPROVAL	i
ADMITTED	ii
ACKNOWLEDGEMENT	111
ABSTRACT	iv
LIST OF FIGURES	v
LIST OF ABBREVIATION	viii

CHAPTER 1: INTRODUCTION

1.1	INTRODUCTION OF RAILWAY TRACKS	Ţ
1.2	PROBLEM STATEMENT	3
1.3	OBJECTIVE OF RESEARCH	5
1.4	LIMITATION AND SCOPE OF THE STUDY	5
1.5	CHAPTER ORGANIZATION	5

CHAPTER 2: THE CONSTRUCTION OF RAILWAY TRACKS

ĩ

2.1 Introduction of Track Component	8
2.1.1 Ballast	8
2.1.2 Sub-ballast	10
2.1.3 Sub-grade	10
2.1.4 Train/track models	12
2.2 Railway ballast	
2.2.1 Ballast materials, requirements and properties	s 14
2.2.2 Experimental measurements on ballast	14
2.2.3 Ballast modeling	17

2.3 Track settlement		
2.3.1 Experimental measurements on track settlements	22	
2.3.2 Track stiffness measurements	24	
2.3.3 Modeling ballast and track settlements	26	
2.4 Theoretical modeling of railway track and sub-structure 32		
2.4.1 Modeling for static loading	33	
2.4.2 Modeling for dynamic loading	33	
2.4.2.1 Frequency domain modeling	34	
2.4.2.2 Time-domain modeling	35	
2.4.2.3 Track models	36	
2.5 Train/track interaction model with track settlement	39	
2.6 Concluding remarks	43	
2.7 Summary	43	

CHAPTER 3: METHODOLOGY STUDIES -

3.1	INTRODUCTION	45
3.2	RESEARCH STRATEGY	46
	3.2.1. Site Survey	46
	3.2.2. Collecting Recorded Information	46
i.	3.2.3. Distribution of Questionnaire	47
	3.2.4 Comment	47
3.3	METHOD OF RESEARCH	48
	3.3.1 First Stage; Literature Study	49
	3.3.2 Second Stage; Data Collection	49
	3.3.3 Third Stage; Analyze Answered Questionnaires	50
	3.3.4 Forth Stage; Interviews	50
3.4	COLLECTING AND DATA ANALYSIS	
	(SITE INVESTIGATION)	51