

REFURBISHMENT OF A SUBSONIC WIND TUNNEL

NURDIANA IDRIS (2000215974)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi MARA (UiTM)

OCTOBER 2002

ACKNOWLEDGEMENTS

In the name of Allah, most gracious and merciful, with His permission, Alhamdulillah the project has been completed. Praises to Prophet Muhammad S.A.W, his companions and to those on the path as what he preached upon, may Allah Almighty showers us His blessings and compassions.

I would like to express my gratitude to my advisor, Mr. Nazri Mohamad, for his encouragement and support in pursuing my degree program, and his guidance in this project.

I also thank to Proffesor Dr. C.S. Ow for his guidance. I am very grateful to Mr. Karim for his assistance in the course of completing this work. I would like to express my deep appreciation to those who without hesitation had sincerely helped in this project, especially all lab assistance. Thanks to the Fakulty of Mechanical Engineering, UiTM for its financial support.

Finally, I would like to thank my father, Haji Idris and my mother, Norizan for their moral and personal support. And lastly to all my beloved friends.

ABSTRACT

The Faculty of Civil Engineering was about to discard an instructional low speed wind tunnel. The tunnel has not been operational for the last five years and the components have been disintegrated and in extremely poor conditions. As the Faculty of Mechanical Engineering is in need of a wind tunnel, initial estimate was conducted to evaluate the cost of purchasing a new wind tunnel against salvaging this tunnel. In this project, the student has assessed the condition of the tunnel, proposed solutions to bring back the tunnel to operational state, supervised the refurbishment of the tunnel, tested the tunnel and conducted aerodynamic experiments to show the tunnel is again useful for instructional purposes. The cost of refurbishing the tunnel is about RM 15,000 as compared to about RM 100, 000 if a new tunnel of similar capability was acquired. The refurbished tunnel was tested and found to be in good working condition.

TABLE OF CONTENTS

CONTENTS			PAGE		
PAGE TITTLE			i		
ACKNOWLEDGEMENT					
ABSTRACT			iii		
TABLE OF CONT	TENTS		īv		
LIST OF TABLES	ST OF TABLES				
LIST OF FIGURES					
LIST OF ABBRE	VIATIONS		ix		
•					
CHAPTER I	INTRODUCTION		1		
	1.1	Project Description	1		
	1.2	Objectives	2		
	1.3	Scopes of Project	2		
CHAPTER II	THE WIND TUNNEL		3		
	2.1	Types of Wind Tunnel	5		
	2.2	Parts of Wind Tunnel	6		
	2.3	Field of Operation	8		
	2.4	Small Wind Tunnel	9		
		2.4.1 The Small Wind Tunnel For Instruction	9		

CHAPTER III	FKM	FKM SUBSONIC WIND TUNNEL FACILITY	
	3.1	General Description	10
	3.2	Schematic	11
	3.3	Instruments	11
CHAPTER IV	WIND TUNNEL RETROFIT		13
	4.1	Description	13
	4.2	Wind Tunnel Condition	13
	4.3	Experiment	17
	4.4	Design Analysis	17
		4.4.1 Performance Requirement	17
		4.4.2 Fan and Motor Section	17
		4.4.3 Test Section Design	21
		4.4.4 Velocity Measurement	22
	4.5	Cost Estimation	23
CHAPTER V	WIN	D TUNNEL TESTING	
	5.1	Performance Testing	24
		5.1.1 Maximum Velocity	24
		5.1.2 Velocity Distribution	25
		5.1.3 Noise Level	26
	5.2	Experiments Conducted	26
		5.2.1 Measurement of lift and drag in an aerofoil	26
		5.2.2 Measurement of drag on drag models	30
CHAPTER VI	CON	ICLUSION	34
	6 1	Future Work	35