

RECIRCULATING WATER TUNNEL

YAHAYA BIN AHMAD (2000216087)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > OCTOBER 2002

ACKNOWLEDGEMENT

In the name of ALLAH, the most gracious and merciful. I praise Him and I seek His noble Prophet s.a.w. I would like to acknowledge with grateful thanks to ALLAH who has enabled me to complete this final project. Here, I would like to express out thanks to project advisor, Prof. Ir. Dr. C.S. Ow for his guidance and assistance in completing this final project.

My appreciation is also extend to Mohd Nazira Nasir my best partner for giving me full co-operation in completing this project. I'm also would like to thank to En. Halim Minar with his co-operation during the processes of construction of a model.

Not forgetting for me to thank to all technicians of Faculty of Mechanical Engineering in helping me in fabricating our project design. Their expertise and invaluable assistance helped me to finish my project.

Lastly, I would like to express my gratitude to technician from Faculty of Electrical Engineering for their help and lending their DC electric motor for model testing purposes.

ABSTRACT

The technique of dimensional analysis is used to indicate the parameter groups that may influence flow under any particular set of prevailing conditions. Model testing, based upon a systematic variation of these groups, is necessary to determine their relative importance. Once this has been established the rules of geometric and dynamic similarity must be invoked to allow design decisions to be taken based upon test results. The study of re-circulating water tunnel has been made for the purposes of achieving the dimensional analysis experiment. The testing area of re-circulating water tunnel is design to satisfy the steady flow condition. The speeds of the flow are designing to be variable. The height of sharp crest and the rotational speed of propeller will control the flow. The re-circulating water tunnel is powered by the electric motor with the variable speed control. The various models that can be tested in this re-circulating water tunnel are ship, submarine and other equipment that is used in water.

TABLE OF CONTENT

CONTENT	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	Ĩ
ABSTRACT	lii
TABLE OF CONTENT	iv
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW 2.1. Study about water flow 2.2 Study about dimensional analysis 2.2.1 Geometric similarity 2.3.2 Dynamic similarity	3 4 4 5
CHAPTER 3 FLOW THEORY 3.1 Description 3.2 Calculation Step	6 7
CHAPTER 4 MATERIAL AND THICKNESS 4.1 Description 4.2 Thickness calculation	13 14
CHAPTER 5 GUIDE VANES 5.1 Description 5.2 Guide vane calculation	18 19
CHAPTER 6 PROPELLER 6.1 Propeller Selection 6.2 Propeller calculation	20 20
CHAPTER 7 DIFFUSER 7.1 Diffuser Geometry 7.2 Design of Diffuser	23 24
CHAPTER 8 SEALING AND JOINING 8.1 Description 8.2 Fastener 8.3 Sealing	26 26 28
CHAPTER 9 WATER TREATMENT 9.1 Filtration 9.2 Objective of Filtration 9.3 Location of the Filter 9.4 Usage of the Filter	29 29 30 30

CHAPTER 10 DRAWING AND SPECIFICATIONS 10.1 Specification	31
CHAPTER 12 DISCUSSION	39
CHAPTER 13 CONCLUSION	41
REFERENCE	42
APPENDIX	