FINAL PROJECT REPORT

TOPIC

THE EFFECTS OF SPRING TO THE SUSPENSION SYSTEM

DIPLOMA IN MECHANICAL ENGINEERING (AUTOMOTIVE) FACULTY OF MECHANICAL ENGINEERING UNIVERSITY TECHNOLOGY MARA SHAH ALAM SELANGOR DARUL EHSAN

PREPARED BY:

PETER GERALD MOJULI 99193731

MOHAMMAD HAZRIN ABDOL RAHMAN 99015262

ZULHAIRIZAM ZULKAPLI 99193728

PROJECT ADVISOR PROF. MADYA EN ZAMRI ABDUL RAHMAN

OCTOBER 2002

ACKNOWLEDGEMENT

Praise and grace to ALLAH S.W.T. Creator of the universe for under His command, we manage to complete our final project. This final project (EM 112) is prerequisite in attaining a Diploma in Mechanical Engineering (Automotive) from the Mechanical Engineering Faculty, University Technology Mara.

In completing this project, we are totally indebted to our respected lecturers, technician of Faculty of Mechanical Engineering and our fellow friends. Their contributions were vital and very helpful.

We are grateful to Prof. Madya En. Zamri Abdul Rahman, our project advisor for demonstrating faith and patience in our capability to carry out this project. We managed to go through all the difficulties under his guidance, advice, information and knowledge and we will not able to complete the project without his supervision.

Special thanks also go to Dr. Solomon Darius, Prof. Madya En. Ahmad Kamil and En. Abu (Strength Lab Assistance) for helping us in the progress of this project. Their expertise and invaluable assistance helped us to finish our project.

ABSTRACT

The title of our final project is " The effects of spring to the suspension system ". The purpose of this study shall be concerning with the stiffness of coil spring when in original length or after modified.

Generally, in this project we fabricated the test set-up for testing coil spring of vehicle and loads, which will be applied, to it.

In future, students working in this set-up will be able to find the performance of coil spring by applying different loads with relationship to the spring displacement. By this research, we can know the ability of coil spring by following the duration of uses and how much capability of load that can be loaded.

By doing this research, we gained a lot of experience on spring stiffness due to load applied when the spring is in standard or modified length.

TABLE OF CONTENTS

CO	NTEN	PAGE	
PAGE TITLE			Ì
ACK	NOL	iv	
ABS	STRA	vi	
CHA	PTE	R 1 INTRODUCTION	
1.1	GEI	NERAL INTRODUCTION	1
	Sus	pension system (overview)	
1.2	Spri	ings	3
	Wha	at does spring do?	
1.3	Spring rates		5
1.4	Spri	7	
	i)	coil spring	
	ii)	leaf spring	
	iii)	torsion bar	
	iv)	air spring	

CHAPTER 2 LITERATURE REVIEW

2.1	Springs (fundamental)	14
2.2	Spring rates and how to work them out	17
2.3	Bottom arm, front suspension alignment	20
2.4	Shocks	26
	Summary	30
2.5	Spring stiffness	32
2.6	Wheel travel and body roll	
2.7	Roll stiffness	34
2.8	Spring stiffness for racing and street use	35
2.9	Using spring to lower the car	38
2.10	Coil-over spring	40
	Summary	43
2.11	How spring rates change dynamically	45
	Coil bind	48
2.13	Spring stress	49
2.14	Spring "sets"	51
2.15	Why spring bow	52