

CORROSION PROTECTION

NOR HAYATI BINTI YAHYA (99374188)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor of Engineering (Hons) Mechanical

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > **SEPTEMBER 2002**

ACKNOWLEDGEMENT

In the name of Allah S.W.T, The Most Gracious who has given me strength and ability to complete this project. All perfect praises belong to Allah S.W.T, Lord of the Universe. May His blessings upon the Prophet Muhammad S.A.W and members of the family and companions.

The success of this project was due part of various personnel involved at the each or every stage. It is to this effect that I would like to convey my most sincere and heartfelt gratitude to my supervisor, Assoc. Prof. Ir. Dr. Mohamad Nor Berhan, and co-supervisor, Mr Saifollah Abdullah, who has given many valuable suggestions and encouragement acting as a very necessary catalyst in achieving my objective.

My heartiest thanks to all the Academic and Non-Academic staffs in Faculty of Mechanical Engineering and Faculty of Science, friends and family who are giving me some guidance and support to make it all possible.

ABSTRACT

Destructive of metal by other than mechanical means is defined as corrosion failure and is the result of a destructive attack by chemical or electrochemical reactions with its environment.

There are two different types of environment effects in this project and the objective is mainly to determine the best composition of Mg-Zn anode for buried pipes. Firstly we have the Sodium Chloride (NaCl) environment effects on corrosion. Out of 10 pipe samples, 7 were protected with different composition of Mg-Zn. The remaining pipe samples were not protected at all. The pipes were buried in different environment for a month before measuring its weight loss. Next, the use of Sodium Hydroxide (NaOH) as corrosion accelerator. With the same quantity of pipe samples and composition of Mg-Zn, the pipes were buried for four months in different environment.

The important gain of this project is not only focused on the composition of Mg-Zn itself but the effects of NaCl and NaOH that may or may not be suitable for the anodes.

TABLE OF CONTENTS

CONTENTS	PAGE
ACKNOWLEDGEMENT	i
ABSTRACT	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii

CHAPTER 1 INTRODUCTION

1.0	Defini	ition of Corrosion	1
1.1	Cost o	of Corrosion	1
1.2	Prima	ry and Secondary Corrosion	2
	Mech	anisms	
1.3	Princi	ples of Corrosion Resistance	4
1.4 Corro	Corro	sion Control	4
	1.4.1	Cathodic and Anodic Protection	5
	1.4.2	Coating	6
	1.4.3	Material Selections	7
	1.4.4	Design	7
	1.4.5	Alteration on Environment	7

CHAPTER 2 THEORY ON EXPERIMENTAL PARAMETERS

2.0	Electrochemical Reactions	9
2.1	Corrosion in Moist Environments:	11
	Electrochemical Mechanism	
2.2	The Soil	11
2.3	Sacrificial anodes	12
	2.3.1 Magnesium Anodes	12
	2.3.2 Zinc Anodes	13
2.4	Connecting Method	13
	2.4.1 Brazing	13
	2.4.2 Thermit Welding	14
2.5	Backfill	14
2.6	Corrosion Rate Units and Calculation	15
2.7	Calculation for Anode Weight	16

8

CHAPTER 3 MATERIALS AND EXPERIMENTAL SET-UP

3.0	Experimental Details	19
3.1	Apparatus	19
3.2	Procedure	20

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Sodium Chloride (NaCl) Environment	22
	Effects on Corrosion	
4.2	Sodium Hydroxide (NaOH) Environment	
	Effect on Corrosion	27
	4.2.1 Unprotected Samples	27
	4.2.2 Protected Samples	29