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ABSTRACT 

Squeezed states of light promise great potential applications in many fields. It can 

surpass the standard quantum limit, hence making it crucial in precision 

measurements and quantum information processing. In this work, the generation of 

squeezed states of light is investigated theoretically using two different mathematical 

methods; the phase space method and the analytical perturbative method. Using these 

two methods, the generation of squeezed states of light in a two-guided waves coupler 

with Kerr nonlinearity and a three-guided waves coupler with second-order 

nonlinearity is studied. The overall behavior of both systems is defined by its 

dimensionless Hamiltonian operator. The phase space method is based on 

Schrödinger-picture in quantum mechanics, where the evolution of the system is 

specified by the density operator which represents the state vector (or wavefunction). 

In this method, the evolution of the Hamiltonian operator is described through the 

Von-Neumann equation. This equation is then converted into its corresponding 

classical Fokker-Planck equations using the positive-P representation. An equivalent 

set of Langevin stochastic equations are then obtained from the Fokker-Planck 

equation using the Ito calculus rules. Finally, the system is solved numerically and 

averaged over thousands of trajectories to obtain a reliable solution. On the other side, 

the analytical perturbative method is based on the Heisenberg picture in quantum 

mechanics where the operators are evolving in time, but the state vectors are time-

independent. In this case, the Hamiltonian evolution is described by the Heisenberg 

equation of motion and a solution for the propagating modes is proposed in the form 

of the Baker-Hausdorff (BH) formula. The solution obtained using this method is 

validated by calculating the equal time commutation relation (ETCR). Single-mode 

squeezed states with frequency matching and mismatching generated from both 

methods at different combinations of input parameters are shown. The strength and 

weaknesses of each method are also discussed. From the obtained result, the two-

channel system produces squeezed states with a steady oscillation pattern. Meanwhile, 

a more interesting pattern was shown by the three-channel system. For both systems, 

similar effects are observed when the coupling constants (linear and nonlinear) are 

manipulated. The increment of linear coupling results in the frequent squeezing 

signal, while the increment of nonlinear coupling yields the squeezing with high 

maximal amplitude. Under the existence of frequency mismatch, the two-channel 

system demonstrates collapses and revivals-like squeezed states, while the three-

channel system produces squeezed states with erratic behavior. In the case of 

contradirectional propagation, the two-channel system shows a drastic improvement 

in the squeezing intensity. However, the contradirectional propagation does not 

significantly affect the squeezing intensity. As an overall conclusion, a good 

agreement between both methods was achieved, especially at early evolution stages 

and lower values of linear coupling coefficient. On one side, the analytical 

perturbative method seems insensitive to higher values of nonlinear coupling 

coefficients. Nevertheless, it demonstrated better numerical stability. On the other 

side, the solution of the stochastic equations resulting from the phase space method is 

numerically expensive as it requires averaging over thousands of trajectories. Besides, 

numerically unstable trajectories appear with positive-P representation at higher 

values of nonlinearity. 
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