AN EXPERIMENTAL CONCEPT OF HYDROGEN PRODUCTION CELL FROM SEAWATER GALVANIC- CELL

1

ĸ

INSTITUT PENYELIDIKAN, PEMBANGUNAN DAN

PENGKOMERSILAN

UNIVERSITI TEKNOLOGI MARA

40450 SHAH ALAM SELANGOR

MALAYSIA

BY

HAMIZAH MOHD ZAKI

RUSNAH SAMSUDDIN

DIYANI BUSRAH

MARYAM HUSIN

NOVEMBER 2005

TABLE OF CONTENT

-

Chapter	Content	Page
ACKNOWLED	GEMENT	0
TABLE OF CO	DNTENT *	iii
LIST OF TABI	LE	vi
LIST OF FIGURES		vii
l	INTRODUCTION	
	Introduction	
	1.1. Introduction	2 4
	1.2. Hydrogen Production via Electrochemical	4
	Processes	
	1.3. Principle of Galvanic Cell: Galvanic Corrosion	5
	Concept	
	1.3.1 Factors Affecting Galvanic Corrosion	6
	1.4. Electrochemistry of Seawater Battery	6
×	1.5. Objectives	7
	1.6. Scope of Work	8
	3	
2	2.1 The Hydrogen Economy	9
* 2	2.1.1 Hydrogen	́п́
	2.1.2 Safety and Storage	13
	2.2 Fuel Cells	13
	2.2.1 Hydrogen fuel cells	13
	2.2.2 Types of fuel cells	14
	2.3 Hydrogen production	18
	2.3.1 Producing Hydrogen from fossil-	10
	based fuels	17
	2.3.1.1 Argonne National Laboratory Fuel-	19
	Reforming Technology	
	2.3.1.2 CSIRO Solar, Thermal-Gas Hybrid	21
	Energy concept	
	2.3.1.3 Direct-Contact Pyrolysis using heat	22
	from nuclear reactors	
	2.3.1.4 Disadvantages of producing	23
	Hydrogen from fossil-based fuels	
	2.3.2 Producing Hydrogen from	24
	electrochemical process: A water based	
	Hydrogen production	
	2.3.2.1 Water electrolysis using electricity	25
	produced from renewable energy supplies	
	2.3.2.2 Hydrogen production from offshore	26
	wind parks	
	2.3.2.3 High temperature electrolysis of	29
	water	

:*: _

	2.3.2.4 Gaseous Hydrogen production by	30	
	water dissociation method		
	2.3.2.5 Issues regarding Hydrogen	32	
	production via electrochemical processes	34	
2.4 El	2.4 Electrochemistry		
	2.4.1 Galvanic (Voltaic) cell	34	
	2.4.1.1 Principle of galvanic cell: Galvanic	34	
	corrosion concept		
	2.4.1.2 Factors that influence galvanic corrosion	34	
	2.4.1.3 Electrochemistry of Galvanic	36	
	(Voltaic) cell	THE OF	
	2.4.1.4 Setting up a Galvanic cell	37	
	2.4.2 Electrolytic Cell	39	
	2.4.2.1 Standard state cell potential	40	
	2.4.3 Application of the Galvanic	42	
	corrosion concept in energy generation:		
	Battery		
	2.4.3.1 Electrochemical power sources	43	
	(Battery)		
	2.4.3.2 Primary cells	43	
25.5	2.5 Seawater		
2.5 0	2.5.1 Seawater battery	44 46	
	2.5.1.1 Electrochemistry of seawater	40	
	battery	77	
	2.5.2 Seawater electrolysis	48	
2.6	The concept of seawater galvanic	50	
2.0	electrolytic Hydrogen production cell	50	
MET	THODOLOGY		
3.1 N	laterials and Instruments	52	
	3.1.1. Materials	52	
	3.1.2. Instrument and Apparatus	52	
3.2 N	3.2 Material Preparation		
	3.2.1 Electrodes	52 52	
	3.2.2 Seawater	52	
3.3 P	reliminary Study	53	
	3.3.1 Effect of Cell Parameters	53	
	3.3.2 Effect of Electrolyte Volume	53	
	3.3.3 Effect of Mg Dimension (length)	54	
340	Comparative Study	55	
5.10	3.4.1 Different Types of Seawater Galvanic Cells	55	
350	Procedure	56	
5.51	3.5.1 Measurement of Cell Voltage	57	
	3.5.2 Cell Performance	58	
	3.5.3 Cell Selection	58	
	5.5.5 Cen Selection	38	

÷

ą

n

CHAPTER 1

1.1 INTRODUCTION

To date, energy generation and dependence throughout the world has largely been based on fossil or hydrocarbon based fuels. With the ongoing depletion of oil a prime constituents of fossil fuels, in addition to anthropogenic greenhouse gas emissions (contributing to the global warming) and other pollutants, had rapidly increased the initiative to substitute fossil fuels with other type of fuel sources. An important aspect that needed to be considered included the aspect of sustainability, costs, fuel resource availability and also environmental acceptability.

Although many alternative sustainable energy pathways may emerge, the so-called "Hydrogen economy" has received particular attention (Bockris; J.O'M, 2002). A Hydrogen-based energy system is regarded as a viable and advantageous option for delivering high-quality energy services in a wide range of applications in an efficient, clean and safe manner while meeting sustainability goals (Conte; M. *et al.*, 2001). Hydrogen also provides an ideal complement to electricity.

It is also acknowledged that, the future Hydrogen economy scenario would be dependent much on water electrolysis processes to obtain sustainable supply of Hydrogen to cater for its fuel demand. For that matter, two important issue regarding Hydrogen production are the capital energy investment required as an input for the electrolysis and the use of a huge amount of water (preferably clean water) to be electrolyzed

3

to produce sufficient volume of Hydrogen. A simple and intermediate approach implying to present scenario would be by using electricity from power generation plant.

However, since the seawater electrolysis concept is relatively new and much of the effort is currently under various research and development phases, therefore there is not much information at present regarding this concept, but, as far as the future Hydrogen economy is concerned, seawater electrolysis may indeed replace the concept of water electrolysis and seawater may eventually becomes the dominant source for producing Hydrogen electrochemically, with the fact that about 70% of the world is covered by seawater but only little had been done to really exploit the benefits that seawater may present for the human race.

1.2 Hydrogen Production via Electrochemical Processes

Such as being said earlier, in order to produce Hydrogen from the water electrolysis process, first the energy consideration sources required as an input to the electrolysis unit. Although electricity from current power plant may be available for this purpose but still it would not be practical as far as the future sustainable Hydrogen supply is concern, and this merely due to the fact that, current electricity-generating plant depends much on fossil-fuels as its fuel inputs, and eventually this fuels will certainly runs out one way or another.