UNIVERSITI TEKNOLOGI MARA

HEAT TRANSFER ANALYSIS OF DIFFERENT COOLING MEDIUM ON A CONDENSER OF REFRIGERATION SYSTEM

AMIRA NATASHA BIINTI AMIR RIZAL 2019286086

Diploma

March 2022

ACKNOWLEDGEMENT

First and foremost, I would like to praise and thank the Almighty God for His showers of blessing throughout finishing my study successfully.

I would like to express my deepest sincerest gratitude to my supervisor, Helmisyah bin Ahmad Jalaluddin, for his continuous support and advice. His dedication and keen interest, aside from his overwhelming attitude in helping his students are one of the significant factors that hold me responsible for completing this research. I am also grateful to the assistant engineer, Ahmad Aizayuddin bin Abdullah, for his help and guidance throughout experimenting with this analysis. This accomplished study would be impossible without the expertise and advice of Helmisyah bin Ahmad Jalaluddin and Ahmad Aizayuddin bin Abdullah. I would also give my gratitude to the panels in charge, Matzaini bin Katon, Ts. Mohammad Zamin bin Mohamad Jusoh, Siti Nur Amalina Binti Aznam, and Norhanifah Binti Abdul Rahman for the time and attention reading and evaluating my thesis.

I also want to thank my laboratory members and friends for their support and cooperation in helping me during my research pursuit.

Last but not least, I would like to give my gratitude to my parents and family members for the ongoing love and unwavering support, pushing and motivating me to do my best in all of my endeavours.

ABSTRACT

A condenser is a cooling device that induces condensation to high-pressure refrigerants by ventilating the heat of the high-temperature refrigerant while maintaining its pressure. The application of the cooling medium in it is crucial as it will result in the effectiveness of the condenser. Coolant fluid is one of the most functional cooling mediums to be used. This research is an analysis performed to improve the heat transfer features and cooling rates of the device including coolants, the same coolant with two different concentrations, and mass flow rates. The working fluids used are water as Coolant A and Deions Premixed Long-Life Coolant a usual coolant commonly found in the auto car care market. Several modifications have been made on the Deions coolant, which is regarding its concentration and mass flow rate. There are two concentrations of the coolant, Coolant B with 10% and C with 12.5%, and its mass flow rate ranging from 0.5 l/s to 4.0 l/s. The initial temperature of each coolant at the inlet is constant at 26°C. During the experiments, each coolant flows in the piping system, passing through the condenser that carries out the dissipation of the unwanted heat before flowing out of the pipe. Both temperatures of the coolant before and after passing through the condenser were measured with the thermocouple provided. Based on the findings of the study, the Deions Premixed Long-Life Coolant with a higher concentration and mass flow rates is the expected coolant to be the most effective compared to the others. Hence, the objectives of this study were able to be fulfilled successfully.

TABLE OF CONTENTS

CONFIRMATION BY SUPERVISOR

AUTHOR'S DECLARATION

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

CHAPTER ONE: INTRODUCTION

Background of Study

Significance of Study

Problem Statement

Objectives

Scope of Work

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

1.1

1.2

1.3

1.4

1.5

СНАРТ	TER TWO: LITERATURE REVIEW	5
2.1	Thermodynamics	5

		•	
	2.1.1	Refrigeration System	6
2.2	Conc	lenser	7
2.2.1	Туре	of Condensers	7
	2.2.2	Cooling Medium	9
2.3	Perfo	ormance Analysis of the Condenser	10
	2.3.1	Different Types of the Coolant	11
	2.3.2	Concentration of the Coolant	11
	2.3.3	Mass Flow Rate of the Coolant	12
2.4	Conc	lusion	13

ii

iii

iv

v

vi

viii

ix

X

1

1

2

3

3

4

CHA	APTER THREE: METHODOLOGY	15	
3.1	Introduction	15	
3.2	Experimental Details and Designs		
3.3	.3 Samples Preparations and Modifications		
3.4	Data Collection Method and Management	20	
	3.4.1 Literature review	21	
	3.4.2 Preparation of samples	21	
	3.4.3 Choosing the parameters for the experiments	21	
	3.4.4 Running the experiments	21	
	3.4.5 Data collection and analysis	23	
	3.4.6 Discussion and conclusions	25	
3.5	Gantt Chart	25	
CHA	APTER FOUR: RESULTS AND DISCUSSION	28	
4.1	Introduction	28	
4.2	Analysis of Data and Results		
CHA	APTER FIVE: CONCLUSION AND RECOMMENDATIONS	35	
5.1	Conclusions	35	
5.2	Recommendations	35	
REFERENCES			
АРР	ENDICES	39	