

UNIVERSITI TEKNOLOGI MARA CAWANGAN TERENGGANU

MEC299

DEFENSE PROPOSAL

AMIR HAKIM BIN AMRAN SUHAIMI 2020839154

SUPERVISOR: HELMISYAH BIN AHMAD JALALUDIN

ABSTRACT

The refrigeration system has a component that act as 'heart' which called as compressor. The compressor works by increasing the pressure and temperature of the vaporized refrigerant. Reciprocating, rotary, and centrifugal compressors are the most common among refrigeration units. The problem is how the different motor speed in the compressor affect to the refrigeration system. In this research, the objectives are to determine the relationship between the speeds of single compressor and the changes of temperature of refrigerant and to analyze the efficiency of compressor along the change of speed of electric motor. Numerous speeds of motor ranging from 600 to 1400 rpm with interval of 100 rpm. Cooling water flow rate will be constant at 3 litre/minute. Heater power also set at 800 Watt. Therefore, different types of speed will be considered and change during the experiment. It is expected that the greater speed of motor with great heater power can affect the efficiency of condenser flence, it may affect the efficiency of compressor.

TABLE OF CONTENTS

CON	FIRM	ATION SUPERVISOR	2		
ACK	NOWI	LEDGEMENT	2		
PANEL COMMENT					
ABS	TRACT	Γ	4		
TAB	LE OF	CONTENTS	5		
LIST	OF TA	ABLES	7		
LIST	OF FI	IGURES	8		
1.0	.0 Introduction				
	1.1	Background of Study	9		
	1.2	Problem Statement	10		
	1.3	Objectives	11		
	1.4	Scope of Work	11		
	1.5	Significant of Study	11		
	1.6	Expected Result			
2.0	Literature Review				
	2.1	Introduction	13		
	2.2	Refrigeration Cycle	13		
	2.3	Component in Refrigeration System	14		
		2.3.1 Compressor	14		
		2.3.2 Condenser	14		
		2.3.3 Evaporator	15		
		2.3.4 Expansion Valve	15		
	2.4	Compressor Pressure	16		

	2.5	Type of Compressor	17	
		2.5.1 Piston Compressor	17	
		2.5.2 Screw Compressor	18	
		2.5.3 Reciprocating Compressor	18	
3.0	Methodology			
	3.1	Introduction	19	
3.2 Design		Design	20	
		3.2.1 Instruments	21	
	3.3	Machine	21	
	3.4	Experimental Procedure		
	3.5	Gantt Chart	25	
5.0	Refer	ences	26	

LIST OF TABLES

Table	Title	Page
Table 1: Table of Expected Result		12
Table 2: Open-Type Compressor		21
Table 3: AC Motor		21
Table 4: Expansion Valve		21
Table 5: Evaporator		21
Table 6: Condenser		22
Table 7: Name of the Component La	bel	25