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ABSTRACT 

This research attempts to develop a new control algorithm to regulate the blood glucose level 
(BGL) for Type 1 Diabetes. In doing so, Multi-Parametric Programming technique is used to 
develop the computer algorithm; whereas Model-Based Predictive Control (MPC) is adopted 
for the design of the controller. Non-Linear Bergman Minimal Model is used to represent the 
three compartments; plasma glucose, plasma insulin and effective insulin compartments. AU 
simulation and optimisation works are carried out using gPROMS™. Two· types of� 
observations are made so as to study the performance of the proposed co°:trol algorithm 
mainly, the control of BGL values without meal disturbance and the control of BGL values 
following meals. For the control of BGL without meal disturbance, it is found that the BGL 
values increase substantially at first and fluctuate around 80 mg/dL to 130 mg/dL. They then 
tend to level off at 120 mg/dL for sometimes before droppin� drastically to 60 mg/dL. 
However, the BGL values remain at 80 mg/dL prior to reaching its steady state condi�ion at 
the end of the simulation work. For the control of BGL values following meals, it is found 
that there are three peaks occurred, which obviously indicate a sudden change in the BGL 
values in conjunction with the introduction of Fisher meal effect into the glucose-insulin 
dynamic system. Three simulation works are carried out using three different algorithms so as· 
to refine the performance of the controller. For all three cases, theBGL profiles are almost the 
same in which they tend to fluctuate initially around 65 mg/dL to 120 mg/dL prior to levelling 
off at 80 mg/dL throughout the remaining periods. These results match with the works carried 
out by the previous workers. The only major difference is that the value of exogenous insulin 
infusion rate, u is on the higher side. This could be due to different diabetic models used and 
inconsistency in choosing the units for the different parameters. However, it can be concluded 
that with the proposed control algorithm, both hypoglycemia and hyperglycemia are avoided 
and it is hoped that the algorithm can be easily installed in the form of microchip for the 
benefit of the diabetic patient in the near future. 
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CHAPTER! 

INTRODUCTION 

Drug delivery companies have now faced a big challenge to deliver both existing and 

emerging drug technologies in a manner that improves the benefits to the patients, healthcare 

workers and the healthcare system. Areas that are being targeted for improvements through 

device development include: (Brunner, 2004) 

• Improved effi�acy

• Reduced side effects

• Continuous dosing ( sustained released)

• Reduced pain from administration

• Increase ease of use

• Increased use compliance

• Improved mobility

• Decrease involvement of healthcare workers

• • Improved safety for healthcare workers

• Reduced environmental impact (elimination of CFC's)

To provide these benefits, a number of approaches are being or in some cases have been 

developed. The common thread running through the approaches is the concept of self-

. administered, targeted, sustained release with increased bioavailability. Although from a patient 

standpoint the elimination of injections is ideal, indications are that injection will remain a 

necessary means of drug delivery.· To minimise the pain, biohazard, cost and inconvenience 

associated with injections, companies are working to reduce the negative aspects of this delivery. 

Along these lines, new implants and time release approaches, i.e. MicroCHIPS (programmable 

MEMS implant) are under development so as to minimise the number of injections required. 

One of the areas which are currently being developed to solve the above problems is 

advanced computer-based systems that can calculate the most effective, safe dose of a drug for 

an individual patient by using novel mathematical programming methods. The systems can take 

account of and control for a multitude of different parameters using information on the patient's 

make up and medical history, together with data on how different drugs perform and interact 
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with each other. The systems would also be used by researchers to create a biomedical devise to 

help people with diabetes who inject themselves with insulin to manage their condition. This 

devise would ultimately read the patient's blood sugar level and then calculate and deliver the 

mo�t effective dose of insulin, depending on this readout. The overall vision of integrated insulin 

delivery systems is shown in Figure 1.1 (CPSE Annual Report 2008) 

�ol Patient

Figure 1.1 Overall vision of integrated insulin delivery systems 

As shown in the figure, step 1 measures the glucose concentration from the patient. Step 2, the 

sensor then inputs the data to the controller which analyses it and implements the algorithm. 

Step3, after analysing the data the controller then signals the pump to carry out the required 

action. Step 4, the insulin pump delivers the required dose to the patient, intravenously. 

1.1 Objectives of the research 

2 

The objectives of this research are as follows: 

a) to develop computer algorithm using multi-parametric programming technique and

model predictive control (MPC) to control blood glucose level for type 1 diabetes

b) to simulate and optimise the proposed algorithm using gPROMS® prior to being used

in the integrated insulin delivery systems.



CHAPTER2 

LITERATURE REVIEW 

The role of Chemical Engineers has long been accepted as vital in interfacing Biology and 

Medicine so as to benefit research· efforts worldwide at least for the next decade or so. This has 

been identified by the United States National Academy of Engineering and National Science 

Foundation Report entitled 'Beyond-the· Molecular Frontier'. The system approach instilled by 

Chemical Engineers, specialising.in a process systems engineering, should be abl� to help train a 

new type of engineering biologist who can work at the molecular and system wide levels to solve 

physiological and clinical problems (Bogle et al., 2009). 

One of the best examples to demonstrate this role is through numerous studies carried out on 

blood glucose control for type 1 diabetes. By the year 2025, there will be approximately 300 

million people worldwide suffering from diabetes (Dua et al., 2006). Diabetes is a chronic disease 

characterised by insufficient control of blood glucose concentration in the body. The schematic 

diagram of the glucose regulation system in the body is shown in Figure 2.1 (Bogle et al., 2009). 

As depicted in Figure 2.1, glucose enters the bloodstream from the gut and is used in all the other 

organs of the body. It is important that the level of glucose is maintained within certain levels to 

ensure good response of various human functions, i.e. glucose homeostatis. If glucose levels are 

• high, the pancreas produces insulin, the hormone that instructs liver to convert glucose into

glycogen. On the other hand, the glycogen is converted back to glucose as the pancreas produces

glucagon if the blood glucose levels are low. As in the case of type 1 diabetes, the destruction of

insulin producing beta cells in the pancreas causes the patient to .solely rely on blood glucose

measurements through regular insulin injections so as to control thetr desired blood glucose

. concentration between 60 - 120 mg/dL. A shortage of insulin supply may lead to concentration of

blood glucose levels rising above 120 mg/dL and this state is knqwn as hyperglycemia. On the

other hand, excessive supply of insulin may lead to the levels of blood glucose concentration is

dropping below 60 mg/dL and this state is known as hypoglycemia. The target level of blood

glucose concentration should be at 81 mg/dL (Dua et al., 2009).



Figure 2.1 Schematic diagram for glucose regulation system in the �ody 

Numerous works pertaining to the control of blood glucose concentration for type I diabetes 

have been carried out and are available in the open literature. These works can be divided into 

four major areas of applications namely; Simulation Programme, Artificial Intelligence (AI), 

Mathematical Modelling, and Model-based Predictive Control (MPC). 

2.1 Simulation Programme 

Lehmann and Deutsch (1995) developed AIDA, a clinical model of glucose-insulin 

interaction in insulin-dependent (type 1) diabetes for patient and medical" staff educ�tion. The 

model attempts to reflect the underlying (patho) physiology of insulin action and carbohydrate 

absorption in quantitative terms such as insulin sensitivity, volume of glucose, insulin distribution 

and maximal rate of gastric emptying. The anatomical basis and physiological functions of the 

AIDA model is shown in Figure 2.2. The model's predictions allow a 24-hour simulation of blood 

glucose profiles for hypothetical patients to be generated. It is concluded that the model is not 

. refined enough for individual patient simulation and as such the system can only be applied as an 

• educational or demonstration tool.

4 



Figure 2.2 Anatomical basis and physiological functions of the AIDA model 

Hejlesen et al. (1997) developed DIAS, the diabetes advisory system, which provided some 

forms of intervention for diabetic patients who suffered difficulties in controlling their blood 

glucose level. DIAS incorporates a model of human carbohydrate metabolism implemented in a 

Bayesian network ( causal probabilistic network or CPN), which gives it the ability to handle the 

uncertainty; for example, in blood glucose measurements or physiological variations in glucose 

metabolism. Two adjustable parameters included in the model are namely: the insulin sensitivity 

and time-to-peak of NPH-type insulin absorption. The system operates in three modes namely; 

learning, prediction and advisory modes. In learning mode, standard data on blood glucose 

concentration, insulin injections and carbohydrate content in the meals from one or more days are 

used to estimate the two adjustable parameters. In the prediction mode, the estimated parameter 

for insulin sensitivity and time-to-peak of NPH-type insulin are used to make prediction of the 
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blood glucose concentration given the carbohydrate intake and insulin regimen of the patient. 

This mode can be used to predict unrecognised hypoglycemia or to predict the effect of suggested 

changes, in the insulin regimen or meals, on the blood glucose. In the advisory mode, a utility 

measure is minimised to find the insulin therapy which gives the least overall (predicted) risk of 

too low and too high blood glucose concentrations. It can be regarded as a special version of the 

prediction mode where the manually suggested changes in the insulin regimen are replaced with 

an automatic adjustment procedure performed by the system. DIAS is currently a prototype, and 

with further development work and clinical trials planned, it aims to provide reliable management 

advice for patient with insulin-dependent diabetes. A study in the UK in patients with well­

controlled diabetes showed that DIAS predicted recurrent hypoglycemia at night in more than 50 

percent of cases, and that these predictions were more accurate in five out of six patients taken 

their blood glucose test for hypoglycemia. 

Erzen et al., (2002) developed GlucoSIM, a Web-based Educational Simulation package for 

glucose-insulin levels in human body. An understanding of the physiological and metabolic 

processes, coupled with forming a network between chemical reactions and transport processes 

are extremely essential in modelling the glucose-insulin interaction in the human body. Two 

mathematical models based on pharmacokinetic diagrams of glucose and insulin (Figures 2.3 and 

2.4), which represent the transport of glucose and insulin through the major ves·sels to the 

capillaries, have been used to develop the simulation package. As shown in Figure 2.3, the 

glucose diagram contains tissues including heart, brain, liver, kidney and muscle where the 

glucose is used for energy. The diagram for insulin (Figure 2.4) includes subcutaneous tissue as a 

source for insulin. The advantage of these models is that the models can yield insight into the 

physiological processes. However, the disadvantage is that the models do not take into account 

personal variations . in the physiological parameters which, in turn, give only average values for 

the output. 
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2.2 Artificial Intelligence 

Montani et al. (2003) presented a multi-modal reasomng (MMR) methodology, which 

integrated case-based reasoning (CBR), rule-based reasoning (RBR) and model-based reasoning 

(MBR) to provide a reliable decision support tool for physicians in the context of type 1 diabetes 

management. The system architecture of the methodology presented is shown in Figure 2.5. As 

shown in Figure 2.5, there are four consecutive tasks that need to be executed in the 

implementation of the therapy revision process for type 1 diabetes care. The completion of the 

process is scheduled by a RBR system within which each task is mapped into a specific set of 

rules, fired through a forward chaining mechanism. The four tasks, which are consecutively 

executed in the reasoning paradigm, are detailed as follows: 

a. Data analysis:

The probabilistic description of the modal day of the patient is resorted so as to interpret the

effects of a therapy. In particular, the patient's blood glucose level (BGL) modal day is

extracted after a discretisation and aggregation of BGL values performed on the basis of

qualitative abstractions.

b. Problem identification:

The identification of hypoglycemia problems in the different periods of the day is triggered as

a result of the modal day extraction. This task can be independently completed by the_ RBR

system or its behaviour can be specialised resorting to the integration with case-based

retrieval. In particular, in the problem identification task, only classification results are

exploited, thus tailoring the identification of metabolic alterations to the single patient's

needs.

c. Suggestion generation and selection:
In this task, a set of suggestions on how to modify the current insulin therapy are proposed on

the basis of insulin competent concept. The most competent insulin which has the stronger

effect on the moment of the day in· which the problem is in question, is then identified.

Competence is evaluated based on the underlying pharmacokinetics of the different insulin

types.

d. Therapy revision:

8 

An adjustment to the current insulin therapy is proposed by the RBR system in accordance

with the selected suggestions. In the formal evaluation study, it was found that RBR was not



sharp enough to promptly face the patient's alteration although its behaviour was judged 

correctly and satisfactorily. In order to solve this weakness, an integration of the RBR results 

with MBR or with CBR has to be done. Therefore, MBR and CBR are used in a mutually 

exclusive way to specialise the rules behaviour. Moreover, the classification procedure 

provides an added value: the identification of the most probable class(es) for the input case 

allows to detect a suitable context for interpreting the case itself, the metabolic alterations can 

be evaluated in the light of the patient's features and the therapeutic suggestion can be adapted 

to them. 

Figure 2.5 Implementation of the integration between RBR, CBR and MBR in the 
automatic reasoning process for therapy revision (MMR)

The results obtained from the implementation of the MMR methodology are shown in Figures 

2.6 and 2.7. As shown in Figure 2.6, a comparison is made between the starting profile 

(continuous line), the model-based decision support system solution (dash-dotted line) and the 

optimal solution ( dashed line). The circles represent the mean of the measurements available to 

the model-based system. Figure 2.6(a) represents a simulated patient with normal insulin 

sensitivity and following meal plan 5. The two approaches show nearly similar profiles, i.e. the 

patient profile at bed time is only slightly improved in both cases. Figure 2.6(b) represents a 
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simulated patient with high insulin sensitivity and following meal plan 3. The two approaches 

show again nearly similar profiles, i.e. in both cases the original· hyperglycemic profile is 

properly handled in order to generate a normoglycemic one. Figure 2.6(c) represents a simulated 

patient with low insulin sensitivity and following meal plan 7. The model-based decision support 

system shows a sub-optimal capability of normalising the blood glucose profile, although the 

solution does not show strong differences from the optimal one. Figures 2.7(a) and 2.7(b) 

compare the results obtained between MBR-RBR and RBR integration, respectively. It is found 

that both methodologies suggest therapy changes ameliorate the initial metabolic behaviour but 

the use of the model largely increases efficacy, thus allowing a total recovery from 

hypoglycemia. From the retrospective evaluation carried out for both MBR-RBR and RBR, it 

was found that in the case of RBR, there was slight amelioration of the metabolic behavi9ur 

obtained, whereas the MBR-RBR integration obviously led to the greater improvement. The 

model was applicable in more than 80% of the cases. 

Figure 2.6 Daily simulated BGL profile (24 hr) in response to different therapeutic regimens. A 

simulated patient with: a) normal insulin sensitivity, b) high insulin sensitivity, 

and c) low insulin sensitivity. 
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Figure 2.7 Comparison between MBR-RBR and RBR integration in stabilising a simulated 

patient entering the clinical remission phase. 

Mougiakakou et al., (2005) developed a real time simulation model of glucose-insulin 

metabolism for type 1 diabetic patients using Artificial Neural Networks (ANNs). The model 

was based on the combination of compartmental models and the ANNs. The outline of the 

proposed system is shown in Figure 2.8. As shown in Figure 2.8, the system comprises two 

modules namely; Mathematical Models Module (MM) and Neural Network Module (NN). In the 

NN 1\fochtle 

Figure 2.8 Outline of the proposed system 
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MM module, there are three compartmental models (CM) involved namely: CM-I, CM-II and 

CM-III .. The estimation of plasma insulin concentration based on insulin intake is carried out in

CM-I and CM-II, whereas CM-III provides predictions of glucose inputs into the blood based on

information about the carbohydrate intake. Meanwhile, the NN module consists of a Recurrent

NN (RNN). The outputs of MM module along with previous blood glucose measurements are

then passed to the NN module which provides short term predictions of the blood glucose level.

The RNN is a fully connected NN trained with the online Real Time Recurrent Leaming (RTRL)

algorithm which has ability to update· online the RNN weights. For comparison purposes, two

strategies have been adopted namely, the Free-Run (FR) and the Teacher-Forcing (TF). The

available glucose management is ignored by the RNN for the case of online RTRL-FR strategy,

whereas . in the case of online R TRL-TF strategy the RNN replaces the actual output during

training with the corresponding available glucose measurement. The comparisons between those

two strategies on the measured and the estimated blood glucose levels verses time are shown in

Figure 2.9. It can be concluded that the predictions of the online RTRL-FR trained RNN are

relatively better as compared to the online RTRL-TF trained RNN. The obtained results are

promising for the accuracy and efficiency of the proposed approach for simulation of glucose­

insulin metabolism and prediction of blood glucose levels.

Figure 2.9 Comparison between estimated by the simulation model ( ♦ ), and measured by the patient blood 
glucose level (•), for the testing set (a) using the online RTRL-FR algorithm, and (b) using the online 
RTRL-tF algorithm 
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Mougiakakou et al., (2006) presented the combined use of MM and NN Modules for the 

simulation of glucose-insulin metabolism on children with type 1 diabetes. The schematic 

diagram of the proposed system is shown in Figure 2.10. In order to predict the glucose level at 

a time instant, t the most recently measured blood glucose concentration along with parameters 

reflecting the effects of insulin and food intakes are applied to the NN module. Two different NN 

architectures have been developed and tested for comparative reasons: a feed-forward NN 

(FFNN) and a recurrent NN (RNN). As for the RNN, two strategies are applied namely, free-run 

(FR) and teacher-forcing (TF). In order to access the performance of the developed models, the 

root mean square error (RMSE) and the correlation coefficient (CC) have bee11 calculated for 

both data sets and the results are shown in Table 2.1. Based on Table 2.1, it can be deduced that 

the results obtained from FFNN and the RNN trained with online RTRL-TF are superior to those 

obtained by online RTRL-FR trained RNN for all diabetic patients. The obtained results have 

concluded that the model using R TRL-TF trained RNN can simulate more accurate the 

metabolism of children with a type 1 diabetes. 

Figure 2.10 Schematic diagram of the proposed glucose-insulin metabolism models 
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Table 2.1 RMSE along with cc between measured and estimated blood glucose levels for testing sets 

Yasini et al., (2009) employed reinforcement learning theory and Q-leaming algorithm to 

regulate the blood glucose level for type I diabetic patient. The block diagram of a closed-loop 

control system for diabetic patients is shown in Figure 2.11. Based on the figure, the optimal 

insulin delivery rate is calculated by the control algorithm which is designed to keep the patient 

under metabolic control and allows the desired amount of insulin to be pumped mechanically. 

Reinforcement learning theory has been developed as a result of man's effort to analyse the 

Figure 2.11 Closed-loop control of diabetic patient 

behaviour of animal and artificial systems. It focuses on the effect of rewards and punishments 

on subjects choices in their attempt to achieve a goal. There are two basic elements involved 

namely: the learner or decision maker called the agent, and everything it interacts with called the 

environment. This can be described as shown in Figure 2.12. The agent receives the state, Xt of 

its environment at each time step, t and .selects an action, at based on this perception and its past 

experience. Consequently, the agent receives a numerical reward, ft at· one time step later and 
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finds itself a new state based on its action. A mapping is implemented at each time step the agent 

reacts to each possible action as well as state representation. The mapping is called the agent's 

policy. The purpose of applying Q-leaming algorithm for diabetes control is to determine 

appropriate insulin infusion rates in order to stabilise blood glucose levels of the patient at 

reasonable time frame. In this case, the glucose-insulin regulatory system represents the 

environment for the simulation. Meanwhile, insulin infusion rates demonstrate actions in the 

modelling of the system. The reward is set equal to the difference of the glucose concentration 

from its target value of 80 mg/dL, i.e. a reference set point in normoglycemic range of blood 

glucose. 

Figure 2.12 The learning process of the agent through its interaction with the envirqnment 

The validity of the proposed approach is checked through a MATLAB simulation of the closed­

loop system. The results are shown in Figures 2.13 and 2.14. As shown in Figure 2.13, after 

identifying the environment by the agent, model variables become firm in basal amounts and the 

Q-value converges to a constant value. Since the controller implementation requires simple

function evaluation, it is much easier to compute than solving the online optimisation problem. 

As shown in Figure 2.14, three sets of parameters for three different patients have been used to 

check for the robustness of the controller to variations in model parameters. It shows that in all 

three cases, the plasma glucose and insulin level stabilise in a reasonable time interval. The 

controller performs quite well and keeps the blood glucose level of the patients around normal 

value. This work has concluded that the reinforcement learning approach is able to derive the 

explicit insulin delivery rate for type 1 diabetes and the controller designed using Q-learning 

sche�e has the potential to synthesise knowledge to treat the disease. 
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Figure 2.13 Glucose-insulin regulatory system with Q-learning algorithm in off-line state. 

(a)Plasma glucose concentration (b) Plasma insulin concentration (c) Insulin infusion rate

Figure 2.14 Closed-loop glucose regulatory system. ( a) Plasma glucose concentration. (b) Plasma 

insulin concentration. ( c) Exogenous insulin rate. 
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2.3 Mathematical Modelling 

Boutayeb and Chetouani (2006) presented a global overview of mathematical models 

dealing with many aspects of diabetes especially on glucose-insulin dynamics. Among the 

pioneer who developed the mathematical models to estimate the glucose disappearance and 

glucose-insulin dynamics was Bo lie (1961 ). The simple model he proposed is as follows: 

where G, G(t) = glucose concentration 
I = insulin 

P, a1, a2, a3. a4 = parameters 

(2.1) 

(2.2) -. 

The real start of modelling of the glucose-insulin dynamics is thought to begin with the so-called 

Minimal Model proposed by Bergman and Cobelli in the early eighties and the model is as 

follows: 

where, 

dG(t) 

dt 

dX(t) 
� = -P2X(t) + P3(I(t) - lb), X(O) = 0

dl(t) + 
� = P4(G(t) - Ps) t - P6(I(t) - lb),

(G(t) - P 5) + = G(t)-P 5 if G(t) > P 5 and O otherwise 
X(t) = insulin-excitable tissue glucose uptake 
Gb = subject's baseline glycaemia 
h = subject's baseline insulinimia 
Po.:. P 1 = parameters

(2.3) 

(2.4) 

Professor Bergman was awarded the 2006 Banting medal by the American Diabetes 

Association so as to indicate the importance of his minimal model as well as his subsequent 

researches for diabetes understanding. The modified version of the minimal model was proposed 

by Derowich and Boutayeb (2002) who introduced parameters related to physical exercises. The 

model is as follows: 
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dG(t) 
� = -(1 + qz) X(t)G(t) + (P1 + q1)(Gb - G(t)) (2.6) 
dX(t) 
� = -P2X(t) + (P3 + q3 )(/(t) - lb) (2.7) 

where: q1, q2, q3 = parameters related to physical activity 

De Gaetano and Arino (2000) proposed an aggregated delay differential model called a 

dynamic model which was formulated as follows: 

with G(t) = Gb for -b5 � t < 0 

Mukhopadhyay et al., (2004) proposed an extension to the dynamic model by introducing a 

generic weight function, ro in the delay integral kernel for the pancreatic response to glucose .. The 

new model is as follows: 

with G(t) = Gb for t < 0 

Even though the dynamic model solved the problems of the minimal model, Li et al., (2000) 

• noted that some of the interaction terms were too specialised and thus too restricted. They

proposed a more general model which was formulated as follows;

dX(t) 
� = -f(G(t)) - g(G(t)I(t)) + b7, G(O) = Gb + b0 (2.12) 

dl(t) 
c1t = -P(l(t)) + q(L(Gt)), 1(0) =lb + b3 b0 (2.13) 

with G(t) = Gb for - b5 � t < 0 and G1 (0)= G(t+ 0), t > 0, - b5 � 0 < 0
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Palerm (2003) presented an interesting su�vey of mathematical models using control for glucose­

insulin and management of diabetes focusing on the Direct Model Reference Adaptive Control 

(DMRAC). The general DMRAC algorithm is formulated based on the system as follows; 

dx 

dt 
= Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

where x(t) = n x 1 state vector 

u(t) = m x 1 control vector 

y(t) = q x 1 output vector 

A, B, C and D = matrices 

2.4 Model-based Predictive Control (MPC) 

(2.14) 

Parker et al. ( 1999) developed a model-based predictive control (MPC) algorithm and 

constructed a fundamental model to help maintain normoglycemia in type 1 diabetic patient 

using compartmental modelling techniques. The compartmental diagram of the proposed model 

is shown schematically in Figure 2.15. The model of human glucose-insulin system used in this 

study was taken from the initial work of Guyton et al., (1978) which was later updated by 

Sorensen (1985). As shown in Figure 2.15, mass balances around tissues, which are deemed 

important to glucose-fosulin dynamics, are performed so as to obtain individual compartmental 

models. In this model, the combined effects of muscle and adipose tissue are represented by the 

periphery; whereas the stomach and intestine effects are lumped into the gut compartment. An 

arterial glucose concentration acts as the controlled output which is regulated by the insulin 

infusion rate, the manipulated variable. 

19 



llrt1ill 

Attt,w. Jndtto.tts tll.recilo� 

CJ 

ArterfalGJ11wsii t. Mi.>a.111reiruirit 

Figure 2. I 5 Compartmental diagram of the glucose or insulin system in a diabetic patient 

Two approaches were used to control blood glucose concentrations namely, linear model 

• predictive control (MPC) and MPC with state estimation. Garcia et al,. (1989) presented a MPC

which was based on the so-called receding horizon philosophy. An optimal control problem is

solved at each sampling time, starting from the current state over a finite horizon. The

computation is repeated from the new state and over a shifted horizon leading to a moving

horizon policy. The solution of linear MPC relies on a linear dynamic model, incorporates all the

input and output constraints as well as the optimisation problems. The optimisation problem

solved by MPC is given by:

min {llfy[y(k + 1 lk) - R(k + llk)]ll2 
+ llfu�U(k)ll2

} 
.:1U(k) 

where: �U(k) = future input moves 
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R(k+ I I k) = vector of future reference values 
y(k+ Ilk) = vector of predicted future glucose concentrations 

r y = matrices for set point tracking penalty 
r u = matrices for insulin move penalty 

(2.15) 



In the MPC with state estimation (MPC/SE), more additional tuning parameters ( a Kalman Filter 

and reference filter) are included to adjust closed-loop performance. A linear state-space, which 

forms the internal model structure in MPC/SE, changes the old input-output equations of the 

system. The model equations are as follows: 

x(k + 1) = <Px(k) + I'u(k) 
y(k) = Cx(k) 

(2.16) 

The model is constructed from the continuous non-linear diabetic patient model and it is first 

linearised analytically to yield a linear continuous-time model. The model is then converted to a 

discrete-time-minimum-phase representation for use in simulation, yielding <D, r, and C. Finally, 

the controller can estimate the state of the plant and the output using the above equations as well 

as the equations below: 

x(k + 1) = <Px(k) + I'u(k) + KF [y(k)-'- Cx(k)] 
y(k) = Cx(k) 

(2.17) 

Simulation study results using the MA TLAB/SIMULINK environment are promising for both 

linear MPC and MPC/SE algorithms. The results are shown in Table 2.2. 

Table 2.2 Disturbance rejection result 
Controller Undershoot (m2/dL) Settlin2 time (min) 

Linear MPC 9.7 343 
MPC/SE 4.4 204 

As shown in Table 2.2, the increased information available to the MPC/SE algorithm coupled 

with the Kalman filter yields greater than 40% performance improvement in both undershoot and 

settling time. This study concludes that MPC algorithms for insulii;i infusion pump control are 

capable of providing • an excellent framework for glucose control problem. Linear MPC is 

sufficient in controlling blood glucose but results in glucose concentration near the output lower 

bound. On the other hand, a MPC/SE, together with Kalman filter and a more internal model, 

yields improved control performances. In addition, the digital nature of control algorithm allows 

potential applications onto chip technology in the near future. 

Dua and Pistikopoulos (2005) and Dua et al., (2006) developed a control algorithm which 

took into consideration the model of the patient, constraints on insulin infusion rate and blood 
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glucose concentration. The mathematical model of the diabetic patient can be represented as 

follows: 

• Xt+i = Axt + But
S. t. Xmin ::;; Xt ::;; Xmax

Umin :::; Ut • ::;; Umax 
Xt E Rn

Ut E Rm
where: x1 = glucose and insulin concentrations 

u1 = insulin delivery rate 
Rn = state vectors 
Rm = input vectors 
min = lower bound 
max = upper bound 

The optimisation problem using MPC can be represented as follows: 

(2.18) 

mJn j(U,x(t)) = Xi+NyltPXt+Ny lt + r::;1 [xr+kltQXt+klt + Ui+kRUt+kl (2.19) 

where: 

S. t. Xmin::;; Xt+klt ::; Xmax,k = 1, ... ,Ne 

Umin ::;; Ut+k ::;; Umax, k = 1, ... , Ne

Xt+k+llt = AXt+klt + But+k,k 2:: 0 
Ut+k = KXt+klt• Nu ::;; k ::;; N

y 

u = [ul, ......... , Uf+Nu-1]
T 

Q and R = constant matrices 
P = Riccati equation 

Ny = prediction horizon 
Nu= control horizon 
Ne = constraint horizon 

K = feedback gain 

However, a demanding online computational effort has become the major drawback of MPC for 

years. As such, an alternative approach to the solution of MPC is long overdue so as to reduce 

the amount of time, effort and resources needed in terms of its software and hardware 

implementations. The technique used is parametric programming which is an optimisation 

framework in which optimisation variable, u as a function of parameter, Xt can be obtained using 

a generic mathematical technique. In other words, when an objective function, a set of 

constraints and a vector of parameters are given, an optimal value of the optimisation variables is 
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obtained as a set of functions of the parameters and the corresponding regions in the space of 

parameters where these functions are valid (Pistikopoulos et al., 2002). 

Equation (2.19) can be replaced with the elimination of the equalities in its formulation by the 
following equation: 

k-1

k � • Xt+klt = A Xt +
L 

A1 But+k-l-j
j=O 

so as to obtain the quadratic program (QP) as follows: 

min�UTHU + x[FU +�x[Yxt u 2 2 

where:: 
s.t. GU::;; W + Ext

_ [ T T ]T Rs
u- Ut, ......... , Ut+Nu-1 E 

Rs = vector of optimisation variables 
s = mNu 

H,F, G, W, Y and E = obtained from Q and R in (2.19) 

(2.20) 

(2.21) 

The QP problem in (2.21) can then be reformulated as a multi-parametric QP (mp-QP) (Dua et

al., 2002) as follows; 

where: 

Vz(x) = min½zr Hz 
s.t. Gz ::;; W + Sxt 

Z = U + HJ FT 
Xt , Z E Rs

s = E+ GHJFT 

(2.22) 

By treating z as the vector of optimisation variables and Xt as the vector of parameters so as to 

obtain z as a set of explicit functions of Xt, this mp-QP problem can be solved. Using the 

equation, U = z - HJ Frx,, u is then obtained as a set of explicit functions of Xt, Each of these 

functions is valid in a polyhedral region in the space of the state variables, Xt,

The Bergman model (Bergman et al., 1981) is used to design the controller to control the blood 

glucose concentration of the diabetic patient. It is shown schematically in Figure 2.16. As shown 

in Figure 2.16, there are three compartments which represent the model and it can be written 

mathematically as follows: 

Plasma glucose compartment: 
dG 
dt = -P1G -X(G + Gb) + D(t) (2.23) 
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Figure 2.16 Schematic representation of Bergman minimal model 

Plasma insulin Compartment: 
di u(0 
- = -n(I + lb) + -
dt Vi 

Effective insulin compartment: 

dX 
- = -P2X + P3 I
dt 

where: G = plasma glucose concentration above basal value, mg/dL 

I= plasma insulin concentration above basal value, mU/L 

(2.24) 

(2.25) 

X = proportional to plasma insulin concentration in remote compartment, min- 1 

D = meal glucose disturbance, mg/dLmin- 1 

D(t) = Fa/Va 

u = exogenous insulin infusion rate, mU/min 

Gb = basal value of glucose concentration, mg/dL 

h = basal value of insulin concentration, mU/L 

Vi= insulin distribution volume, L 

n = fractional disappearance rate of insulin, min· 1 

Fa = rate of exogenously infused glucose, mg/min 

Va= glucose distribution space, dL 

In this model, parameter values selected among others are: P1 = 0 min- 1, P2 = 0.025 min- 1,

P3 =0.000013 L/mU min2
, Vi= 12 L and n = 5/54 min- 1

. The model is then linearised about the 

steady state value of Gb = 81mg/dL, h = 15 mU/L and ub = 16.6667 mU/min so as to obtain the 

form given in (2.18); 
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where A, B and Bd are discrete state space matrices which can be calculated using gPROMS®. 

Figures 2.17 and 2.18 depict the performance of the control law under the presence of Fisher 

meal disturbances of 20, 50 and 40g of carbohydrate intake, on the non-linear Bergman model 

(2.23)-(2.25). The performances are shown for different Q/R ratios and the number of critical 

regions (CRs) obtained. It is observed that a· Q/R ratio of 1000 gives the best of all the other 

control performances under study. This study concludes that the parametric programming 

approach used to derive the explicit insulin delivery rate for type 1 diabetes is simple to 

implement. Thus, these developments are expected to enhance the automation of insulin delivery 

and reduce patient inconvenience. 

1000 

Timc'(inio) 

Figure 2.17 Glucose concentration profiles for Fisher meal disturbance of 20, 50 and 40g and 
for Q/R equal to lO(dotted line), 100 (dashed line) and 1000 (solid line) 
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Figure 2.18 Insulin infusion rate profiles for Fisher meal disturbance of 20, 50 and 40g and for 
Q/R equal to 10( dotted line), 100 ( dashed line) and 1000 ( solid line) 

Finan et al., (2006) carried out a simulation study to identify linear dynamic models to help 

achieve an improved glycemic control for type 1 diabetes when used in a model predictive 

control (MPC) framework. Physiological model considered in the research is the model 

developed by Hovorka et al., (2004) and extended by Wilinska et al., (2005). The steady-state 

map of plasma glucose concentration (G) and insulin infusion rate (u) as predicted by Hovorka 

model for three different patient weights is shown in Figure 2.19. 
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Figure 2.19 Steady-state G-u map for three patient weights. Regions 
1-3 represent different operating regions for the model.



As depicted in the figure, there are three operating regions involved: region l(G 2: 160 mg/dL) in 

which renal glucose excretion is present and proportional to G, region 2 (G 2: 80 mg/dL) in 

which non-insulin dependent glucose uptake is constant, and region 3 (G < 80 mg/dL) in which 

non-insulin-dependent glucose uptake is proportional to G. Thus, the model produces negative 

glucose concentrations for high insulin infusion rates. Although it is unrealistic, the model is 

intended to be operated at physiological glucose levels, i.e. 40 mg/dL < G < 400 mg/dL. 

Two types of linear dynamic models, which are used empirically in this research, are namely 

autoregressive models with exogenous input (ARX) and Box-Jenkins (BJ) models. The ARX 

model is represented by this equation: 

A(q-1)G(t) = B1 (q-1) u(t) + B2(q-1) UG (t) + e(t) (2.26) 
where: q-1 G(t) = G(t-1), q-1 is backward shift operator 

A = scalar polynomial in ascending power q-1, starts at q0= 1 
B1 and B2 = scalar polynomials in ascending power q-1, start at f1

e = Gaussian process noise 

The ARX is a difference equation in which the current output depends on previous outputs and 

inputs. 

Meanwhile, the BJ model is a transfer functron model which models both deterministic inputs 

(i.e. u and UG) and-stochastic inputs (i.e. the noise, e) which is written as follows: 

B1 (q-1) B2 (q-1) C(q-1) 
G(t) = Fi(q-l) u(t) + Fz(q-l) Uc(t) + D(q-l) E(t) (2.27)

where: B1, B2, C, D, F1 and F2 = scalar polynomial powers q- 1
, start at q- 1 

In the simulation results, model accuracy for both calibration and validation data was quantified 

by standard coefficient of determination as follows: 

(2.28) 

where: N =:= no. of samples 
G = output simulated by Hovorka model 

G = output predicted by identified model 
G = average output simulated by Hovorka model 
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Low order and high order ARX and BJ models were identified from each of the three datasets 

representative of normal operation (i.e. NA, NL, NH), Table 3 shows the R2 values of the high­

order ARX and BJ models for the three datasets. 

Table 2.3 R2 values of predictions of high-order models identified from NA for all normal 
datasets. 

Day Model NA NL Nn 

NA ARX 66 48 57 
BJ 77 57 63 

NL ARX 32 74 0 
BJ 52 78. 

' 

42 
Nn ARX 62 27 74 

BJ 71 68 78 

As shown in Table 2.3, both types of model predict their calibration data accuracy (i.e. R;a 1 2::
66%, R;a 1 = 74.5%). In general, BJ models consistently explain more variability in the data 

than ARX models. Table 4 shows the R2 values for the low-order ARX and BJ models for the 

three normal datasets. 

Table 2.4 R2 values of predictions oflow-order models identified from NA for all normal datasets 
Day Model NA NL Nn 

NA ARX 66 43 58 
BJ 71 70 79 

NL ARX 38 70 7 
BJ 62 78 58 

Nn ARX 61 27 72 

BJ 71 66 80 

As shown in Table 2.4, the low-order models fits are comparable to those of the high-order 

models (i.e. R'ti,igh = 56.9%, Rfow = 59.7%) 

The study concludes that accurate linear dynamic models have been identified from a simulated 

physiological diabetes modeL The simulation carried out represents realistic conditions by 

incorporating measurement noise, reasonable meal times and magnitudes, insulin to carbohydrate 

ratio and faults. 

Markakis et al., (2008) developed a non-parametric / principal dynamic model (PDM) as a 

MPC strategy to regulate the blood glucose concentrations in type 1 diabetes. The new minimal 
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Markakis et al., (2008) developed a non-parametric / principal dynamic model (PDM) as a 

MPC strategy to regulate the blood glucose concentrations in type 1 diabetes. The new minimal 

model structure, termed as an Augmented Minimal Model (AMM) is introduced and it is 

represented in the form of equations as follows: 

di 
dt 

= -yl. I(t) + /3. max(G(t) - e[, 0) + D1(t)

dN 
dt = -yN • N(t) +a· max(0N - G(t), 0)

dX dt = -P2 • x(t) + P3 • I(t)

d� 
dt 

= -P1 • G1(t) - x(t) • G(t)

dGN
-

d 
• = -P4 • GN (t) + Ps ·N(t)

t 
G(t) = Gb + G(t) + GN(t) + DG (t) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
where: I= plasma insulin 

N = plasma glucagon 
X = insulin action 
G1 

= blood glucose deviated from basal value (Gb=90 mg/dL) due to insulin action 
GN 

= blood glucose deviated from basal value due to glucagon action 
G = blood glucose concentration 

D1 
= intravenous insulin input 

Do = glucose disturbance (due to meals) 

The following set of parameters represents the dynamics of type 1 diabetes based on simulations 

using Sorensen's model .(Sorensen, 1985): P1 
= 0.013, P2 = 0.063, P3 

= 9x10-6, P4=0.04, 

P5
=0.016, f]=O, yN

=3x10-3, a=8x10-4 and 0N
=83. By simulating the AMM as m�ntioned above, 

discrete time, broadband input-output data is produced and the dynamics capture in the data is 

decomposed in a linear filter. Thus, the Principal Dynamic Mode (from which quantities like 

peak value, peak time, time constant and system memory are directly observable) and a non­

linearity in series can be obtained. The result is presented in the form of Figure 2.20 in which the 

left panel presents the linear filter whereas the right panel shows the corresponding non-linearity 

and its linear approximation. 
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Figure 2.20 The non-linear PDM model of the insulin-glucose dynamics and its 

linearised counterpart 

In order to predict accurately the future values of glucose disturbance, Da, we need to

hypothesise that Da can be considered as the output of an Auto Regressive (AR) model as

follows: 

Da (n) = D - a + w(n) 
D = [DG(n-1) Da (n-2) ....... Da(n-K)] 
a = [a1 a2 ...... aKf 

where: a = vector of coefficient

w = unknown 'innovation process' 

K = order of AR model 

(2.35) 

Estimation of coefficient vector is performed using a linear least squares method as follows: 

a = [ATAr 1 Arb (2.36)

where: A = matrix constructed with appropriate values of D vector over discrete times (m>K) 

b = corresponding vector of disturbance values 

The goal of MPC is to determine the control input value, U(n) at every time instant, n when all 

the knowledge of the PDM model inclusive of the dynamics between insulin and glucose, past 

insulin inputs, estimated future values of glucose disturbance are in place. Hence, the cost 

function can be minimised as follows: 

J(n) = [G(n + pin) - R]T • I'y • [G(n + pin) - R] + I'u • U(n) 2 (2.37)
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where: G(n + pin) = vector of predicted output values over future horizon,_p steps 
R = target output value

I'
y

= diagonal matrix of weighting coefficient 
I'u = scalar to determine how expensive insulin input 

Simulations of the PDM model have been carried out so as to realise the objective of the MPC 

(i.e. to maintain the normoglycemic region in which the blood glucose concentrations are in the 

range of 70 to 110 mg/dL). To achieve this, an insulin micro-pump is used to simulate the 

imposition of an upper bound of 80 mU/min on the magnitude of the exogenous insulin rate. The 

block diagram of the closed-loop system is shown in Figure 2.21. 

G 

Figure 2.21 Closed-loop system for blood glucose regulation 

Figure 2.22 shows the blood glucose concentrations with and without MPC, in its upper panel 

whereas; the lower panel presents the intravenous insulin infusion rate (superimposed to the 

basal rate) as determined by MPC. It can be concluded that the proposed algorithm can regulate 

well blood glucose and is able to deal with both positive and negative deviations of glucose from 

its basal value. The results and conclusions of this work depend critically on the assumption that 

Sorensen's model (from which AMM and PDM are derived) is accurate in regulating the blood 

glucose syst�m as represented in the actual metabolic system. 
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Figure 2.22 Blood glucose with and without MPC and the 

corresponding insulin infusions 

Kovacs et al., (2008) developed an open loop model and a robust controller using a Linear 

Parameter Varying (LPV) methodology and induced £2 -norm minimisation, respectively for 

insulin delivery in type 1 diabetic patients. In doing so, the high complexity non-linear diabetic 

patient Sorensen-model (Parker et al., 2000) was considered. LPV system is a class of nonlinear 

system in which t,he parameter can be an arbitrary time varying; piece-wise continuous and

vector valued function denoted by p(t), defined on a compact set 'P. The dynamics of LPV 

system can be represented as follows: 

x(t) = A(p)x(t) + B(p)u(t) 

y(t) = C(p)x(t) + D(p)u(t) 

where: p(t) E Fp 

Pc R
s 

A:RS -➔Rnxn 

B: RS -➔Rnxnu

C: RS -➔Rn.vxn 

D: K-➔Rn.vx nu

(2.38) 

Another way of describing LPV system is through a polytopic representation. In this case, the 

validity of the model is captured inside a polytopic region and the model is developed from a 
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( [A - BDii··]) ,·linear combination of the linearised models derived in each polytopic point L = c: 

(2.39) 

The 19th order Sorensen's model has two inputs: r meal (meal disturbance) and r,v, (injected 

insulin amount), and two outputs, G�(the capillary heart-lungs glucose concentration) and /� (the 

peripheric insulin concentration in the capillaries). The developed polytopic LPV system of the 

Sorensen's model was simulated and compared with those published in Parker et al. (2000). It 

can be concluded that the results prove to be similar as shown in Figure 2.23. 
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Figure 2.23 The simulation of the nonlinear Sorensen's model (solid) 
and the considered polytopic region ( dashed) 



In the case of robust control design using the Sorensen-model (Parker et al., 2000), it appears 

that a near hypoglycemic situation occurs for the diabetic patient which is considered to be very 

dangerous. Hence, the aim of the LPV based robust control is to minimise the meal disturbance 

level over the performance output for all possible variations of the parameter within the polytope 

Fp, represented as follows: 

IIZY1II 
min II G II = min sup sup --

K K pEFp lldll:;t:0 lldll 
(2.41) 

where: d = the meal disturbance input 

z = glucose variation 

In this study, 5% error on sensor noise and 2% error on glucose measurements are considered. 
. 

. 

For meal disturbances, a 60g of carbohydrate intake is considered. The control loop is extended 

with a weighting function for the control signal and an output uncertainty block, so as to avoid 

the hypoglycemic situation. It is shown in Figure 2.24. 

Figure 2.24 The augmented system and the controller 
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Figure 2.25 shows the performance of the LPV based robust controller with induced £2 -norm 

minimisation over the original nonlinear Sorensen-model. It can be concluded that the 

hypoglycemic situation is avoided and the glucose level is kept inside the normal range at all 

times. 

Figure 2.25 The LPV based robust controller with induced £2 -norm minimisation guaranteed in 
case of the original nonlinear Sorensen's model (solid) and the considered polytopic region 
(dashed) 

Dua et al., (2009) presented techniques within a multi-parametric model predictive control 
(mp-MPC) framework to regulate blood glucose concentrations for type 1 diabetes. The typical 

form ofMPC problem is represented in equation (2.19) and it can be recast as follows: 
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Ny-1 
mJn j(U, x(t)) = Ei+NyJtPEt+NyJt + L [Ei+kltQEt+klt + uf+kRut+d

s.t. Et+klt � -Xt+klt , k � 0
Et+klt � Xt+klt , k � 0 

k=O 

Xmin :::; Xt+klt ::; Xmax, k = 1, ... , Ne

Umin :::; Ut+k :::; Umax, k = 1, ... , N
e

Xt+k+llt = AXt+klt + But+k, k � 0 

(2.42) 

(2.43) 
(2.44) 
(2.45) 
(2.46) 
(2.47) 



Where c(t) is a vector which provides llx(t)II, Equations (2.43) and (2.44) allow positive and 

negative values of x to be weighed equally in the objective function (2.42). Constraints (2.43) and 

(2.44) are modified so as to enforce asymmetric weights on positive and negative deviations as 

follows: 

-r - Et+klt � -Xt+klt , k � 0 

-r + Et+klt � Xt+klt , k � 0 
(2.48) 
(2.49) 

The objective of this asymmetric formulation is to allow different effects in the objective function 

on its positive and negative values of x. Hence, a new approach is presented il) this paper which 

provides the vector of control variables, U as an explicit function of the state variables, x(t). For 

this case, two r-..1PC problems can be formulated: 
N

y-1
mJn j(U, x(t)) = Xi+N

y
ltPXt+N

y
lt + L [xl+kltQ-xt+klt + uf+kRut+k] 

k=O 
S. t. Xm in :5 Xt+klt :5 0, k = l, ... , Ne 

Um in :5 Ut+k :5 Umax, k = 1, ... , Ne 

Xt+k+llt = AXt+klt + BUt+k, k � 0 

and 

N
y-1

mJn j(U, x(t)) = Xi+N
y
ltPXt+N

y
lt + L [xl+kltQ+xt+klt + uf+kRut+k] 

k=O 
S. t. 0 :5 Xt+klt � Xmax, k = l, ... , Ne 

Um in :5 Ut+k :5 Umax, k = 1, ... , Ne 

Xt+k+llt = AXt+klt + BUt+k, k � 0 

(2.50) 

(2.51) 

In the constraint prioritisation work,· as an alternative to the asymmetric objective function 

approach to reduce hypoglycemic excursions, the problem can then be formulated as a set of 

objectives which represent constraints on blood glucose concentration. In order to achieve this, 

the control problem similar to (2.19) can then be formulated as follows: 
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N
y 'N

y-1 
min aTP + pr O + y � Et+klt + 8 � Vt+klt 

U,P,0,V,E L L k=O k=O 
s. t. Et+klt � Xt+klt I k � 0 

Et+klt � -Xt+klt , k � 0 

(2.52) 



Vt+k ;:::: Ut+k, k ;:::: 0 
Vt+k ;:::: -Ut+k, k � 0 
Umtn =:;; Ut+k =:;; Umax, k = 1, ... , Ne

Xt+klt = AXt+klt + But+k, k ;:::: 0 
P1;:::: P2 
P2;:::: P3 

PNp-1;:::: PNp 

01;:::: P1 
02;:::: P2 

0Np;:::: PNp 

l/J( 0t,Xt+klt) ::;; 0, k ;:::: 0 

The results of the study are represented in Figure 2.26. As shown in Figure 2.26, when there are 

symmetric weightings on hypo and hyperglycemia, there is violation of the constraint on 

hypoglycemia and the blood glucose concentration falls below 60 mg/dL (Figure 2.26(a)). 

Hence, two multi-parametric programmes need to be solved in order to avoid this situation; one 

for glucose concentration ;:::: 8 lmg/dL and the other for glucose concentration ::;; 8 I mg/dL. 

Figure 2.26(b) shows the variation of blood glucose concentrations with time for sinusoidal 

disturbance, a much smaller negative deviation from 81 mg/dL is obtained and hypoglycemia is 

avoided. Figure 2.26 (c) shows the performance of the controller, which although is not as good 

as observed for asymmetric case (Figure 2.26(b )), it is much better than for the symmetric case 

(Figure 2.26 (a)) and hypoglycemia is avoided. The study concludes that the proposed techniques 

adequately address the issue of reducing hypoglycemic excursions, which are considered to be 

more harmful than the hyperglycemic excursions, and hence it is expected to provide a safe and 

more convenient method for insulin delivery. 
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Figure 2. 26 Glucose concentration profile for (a) Symmetric objective function, 

(b) Asymmetric objective function, and ( c) Prioritised constraints



CHAPTER3 

METHODOLOGY 

3.1 Multi-parametric programming 

Multi-parametric programming is a technique for solving any optimisation problem, 

where the objective is to minimise or maximise a performance criterion subject_to a given set of

constraints and where some of the parameters vary between specified lower and upper bounds. 

The main characteristic of multi-parametric programming is its ability to obtain: 

i) the objective and optimisation variable as functions of the varying parameters,

and

ii) the regions in the space of the parameters where these functions are valid.

Multi-parametric programming has been applied to a number of applications as follows: 

i) hybrid parametric / stochastic programming,

ii) process planning under uncertainty,

iii) material design under uncertainty,

iv) multi-objective optimisation,

v) flexibility analysis

vi) computation of singular multivariate normal probabilities, and

vii) model predictive control.

The advantage of using multi-parametric programming to address these problems is that for 

problems pertaining to plant operations, such as for process planning, scheduling and control, 

one can obtain a complete map of all the optimal solutions. Hence, as the operating conditions 

vary, one does not have to re-optimise for the new set of conditions, since the optimal solution is 

already available as a function of the operating conditions. 

A general parametric nonlinear programming problem can be represented as follows: 
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nun Jex, 8), 

s.t. gi (x, 8) :s; 0, V i = 1, ... ... . .  , p, 
hj (x, 8) = 0, V i = 1, ... ... . .  , p, 
XE X � �n , 

8 E 0 � �m, 

(3.1) 

where f, g, and h are twice continuously differentiable in x and 8. The first-order Karush­

Kuhn-Tucker (KKT) optimality conditions for (Eq. 3.1) are given as follows: 

'i/L = 0, 

Aj gi,(X, 8) = 0, Aj ;;::: 0, V i = 1, ... ... . .  , p, 
hj (x, 8) = 0, V j = 1, ... ... . .  , q, 

p q 

L = J (x, 8) + I Ai gi, (x, 8) + I µihi, (x, 8) 
i=l j=l 

(3.2) 

The main sensitivity result for (Eq 3.1) derives directly from system (Eq. 3.2) as shown in 

Theorem 1. 

40 

a) Theorem 1. Basic sensitivity theorem. 

Let x0 be a vector of parameter values and (Uo, Ao, µ0) a KKT triple corresponding to Eq. 

(3.2), where Ao is nonnegative and u0 is feasible in Eq. (3.1). Also assume that (i) strict 

complementary slackness (SCS) holds, (ii) the binding constraint gradients are linearly 

independent (LICQ: linear independence constraint qualification), and (iii) the second order 

sufficiently conditions (SOSC) hold. Then, in the neighbourhood of x0 , there exists a unique, 

once continuously differentiable function, z(x)=[u(x), A(x), µ(x)], satisfying Eq. (3.2) with: z 

(x0)=[u(Xo), A(x0), µ(x0)], where u(x) is a unique isolated minimiser for Eq. (3.1), and 

du(x0 ) 

dx 
d11.(x0) 

dx 
dµ(x0) 

dx 

(3.3) 

Where Mo and No are the Jacobian of-system Eq. (3.2) with respect to z and x: 
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'i/2 £ 'vg1 
-Ai 

'iJT gl -gl

Mo·= -Ap 'iJT gp
'iJTh1

'iJTh 
q

Collary 1. First order estimation of x(0), A(8), µ (8), near 0 = 00: Under the assumptions of 

Theorem 1, a first-order approximation of [x(0), A-(0), µ (0),] in a neighbourhood of 00 is: 

[x
(0)

] [
x

0

] A(8) = Ao + (M0)-1. N0. 0 + 0(11011),
µ(8) µo 

(3.4) 

Where (xo, Ao, µ0) = [x(0o), A(80), µ(80)], Mo = M(0o), No = N(0o), and ¢(8) = o(IISII ) 

means that ii��I) ➔ 0 as 8 ➔ 80• 

Despite being a simple and linear expression, Eq. (3.4) may lead to complex 

computational problems, since in the general nonlinear case the Jacobians of system (Eq. 3.2) 

are in most of the cases complex. Fortunately, it simplifies when Eq. (3.1) has a quadratic 

objective function, linear constraints, and the parameters appear on the right-hand side of the 

constraints: 

s.t. Ax:::; b + F8,

x EX !;;;; IR{n ,

8 E 0 !;;;; IR{m ,

(3.5) 

where c is a constant vector of dimension n, Q is an (n x n) symmetric positive definite 

constant matrix, A is a (p x n) constant matrix, F is a (p x m) constant matrix, b is a constant 

vector of dimension p, and X and 0 are compact polyhedral convex sets of dimensions n and 

m, respectively. Note that a term of the form eT Px in the objective function can also be 

addressed in the above formulation, as it can be transformed into the form given in Eq. (3.5) 



by substituting x = s - Q - I pTe, where s is a vector of arbitrary variables of dimension n and 

P is a constant matrix of dimension (m x n). 

An application of Theorem 1 to Eq. (3.5) at [x(0o), 0o] gives the following result: 

Where 

... Ai 1 
•.. '

-v 
p 

Vi = Aix(8Q
) - bi - Fi SQ 

,e 

(3.6) 

(3.7) 

And Y is a null matrix of dimension (n x m). Thus, in the linear-quadratic optimisation problem, 

the Jacobians reduce to a mere algebraic manipulation of the matrices declared in Eq. (3.5). 

In the neighbourhood of the KKT point, [x(0o), 0Q], Collary 1 writes as follows: 

[
xQ

(8)
] _1 [

X(eQ)l 
llQ(S) 

= (-MQ
) N

Q (e-e
Q

)+ A(eQ)
, (3.8) 

Note that when assumptions in Theorem 1 are respected Mo is always invertible. This is where 

parametric programming detaches from the sensitivity analysis theory. Whilst sensitivity analysis 

stops here, where we know what happens if the process conditions deviate from the nominal 

values to some value in its neighbourhood, parametric programming is concerned with the whole 

range of parametric variability. The former associates with the uncertainty, whereas the later 

relates to the variability of the process. 

The space of 0 where this solution (Eq.3.8) remains optimal is defined as the critical 

region, CRQ , and can be obtained by using feasibility and optimality conditions. Note that for 

convenience and simplicity in presentation, the notation CR is used to denote the set of points in 

the space of 0 that lie in CR as well as to denote the set of inequalities which define CR. 
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Feasibility is ensured by substituting XQ(0) into the inactive inequalities given in Eq. (3.5), 

whereas the optimality condition is given by Xo(0) ;::=:: 0, where Xo(0) corresponds to the vector of 

active inequalities, resulting in a set of parametric constraints. This can be represented by: 

(3.9) 

where A, 6 and F correspond to the inactive inequalities and CR10 represents a set of linear 

inequalities defining an initial given region. From the parametric inequalities thus obtained, the 

redundant inequalities are.removed and a compact representation of CRQ is obtained as follows: 

CRQ = .1{CRR}, (3.10) 

where .1 is an operator which removes redundant constraints. Note that a CRQ is a polyhedral 

• region. Once CR0 has identified for.a solution, [x(0Q), 0Q ], the next step is to define the rest of

the region, CRrest as follows:

CRrest = CRIG - CR Q (3 .11)

Another set of parametric solutions in each of these regions is then obtained and 

corresponding CRs are obtained. The algorithm terminates when there are no regions to be 

explored. In other words, the algorithm terminates when the solution of the differential equation 

(3.6) has been fully approximated by first-order expansions. 

The main steps of the algorithm are outlined in Table 3.1. Note that while defining the 

rest of the regions, some of the regions are split and hence the same optimal solution may be 

obtained in more than one region. Therefore, the regions with the same optimal solution are 

united and a compact representation of the final solution is obtained. 

When 0 is present on the right-hand side of the constraints, the solution space of Eq.(3.1) 

is convex and continuous. Since Eq. (3.5) is a special case of Eq. (3.1), its solution has these 

properties as well. Due to its importance, these properties are proved specifically for Eq. (3.5) in 

the next theorem. 

Table 3.1 Multi-parametric Quadratic Programming (mp-QP) Algorithm 

Step 1 In a given region, solve Eq.( 3.5) by treating 0 as a free variable to obtain a feasible 
point [00]. 

Step 2 Fix 0 = 00 and solve Eq. (3.5) to obtain [x(00), A( SQ)] 

Step 3 Compute [- (MoY' NQ] from Eq. (3.6) 

Step 4 Obtain [xQ(0), AQ (8)] from Eq. (3.8) 

43 



Step 5 

Step 6 

Step 7 

Step 8 

Step 9 

Form a set of inequalities, CRK as described in Eq. (3.9) 

Remove redundant inequalities from this set of inequalities and define the 
corresponding CR Q as given in Eq. (3 .10) 

Define the rest of the region, CRrest as given in Eq. • (3 .11) 

If no more regions to explore, go the next step, otherwise go to Step 1 

Collect all the solutions and unify the regions having the same solution to obtain a 
compact representation 

b) Theorem 2.

Let us consider the mp-QP (Eq. 3.5) and let Q be positive definitive, 0 convex. Then the

set of feasible parameters 0f � 0 is convex, the optimizer x(0): 0f H IR{
n is continuous

and piecewise affine, and the optimal .solution z(0) : 0f H IR{ is continuous, convex, and

piecewise quadratic.

Proof. We first prove convexity of 0f and z(0). Take generic 01, 02 E 0f and let z(01), z(02) and 

x1, x2 be the corresponding optimal values and minimisers. Let a E [0,1] define Xa � ax1+(1-

a)x2, 0a � a0 1 + (1- a)02 . By feasibility, x1, x2 satisfy the constraints Ax1 $ b + F01, Ax2 $

b+F02. These inequalities can be linearly combined to obtain AXa $ b + F0a and therefore Xa is

feasible for optimisation problem (Eq. 3.5). Since a feasible solution, x(0a), exists at 0a , an

optimal solution exists at 0a and hence 0fis convex.

The optimal solution at 0a will be less than or equal to the feasible solution: 

and hence, 

T 1T [(T 1T ) (T 1T $ C Xa�Xa Qxa - a C X1 + 2 X1 QX1 + (1- a) C Xz + 2 Xz QXz)]

= ½ [a2xIQx1 + (1 - a) 2xIQx2 + 2a(l- a)xIQx1 - axIQx1 - (1- a)xf Qx2 ]
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which means that, 

(3.12) 

proving the convexity of z(0) on 0f. 

Within the closed polyhedral regions, CRQ, in 0f the solution x(0) is affine (Corollary 1). 

The boundary between two regions belongs to both closed regions. Becaus� the optimum is 

unique, the solution must be continuous across the boundary. The fact that z(0y-is continuous and 

piecewise· quadratic follows trivially. 

Remark: Multi-parametric linear program: 

Note that when Q is a null matrix, (Eq. 3.5) reduces to a multi-parametric linear progra:r:n (mp­

LP). This does not affect the solution procedure described above and the algorithm remains the 

same. This is because the results presented in the theorems are still valid as explained next. The 

results presented in Theorem 1 continue to hold true and SOSC is valid in spite of the fact that Q 

is a null matrix. For mp-LPs, x is an affine function of 0 and 11. remains constant in a CR and 

therefore Corollary 1 can be used. Whilst the results of Theorem 2 regarding 0f and x(0) are still 

valid, z(0) simplifies to a continuous, convex, and piecewise linear function of 0. 

Hence, at the end of the algorithm the solution obtained is a conditional piecewise 

function of the parameters and Theorem 2 implies that the optimal function computed, z(0), is 

continuous and convex. (Pistikopoulos et al. , 2007) 

3.2 Model Predictive Control (MPC) 

Consider the general mathematical description of discrete-time, linear time-invariant 

systems: 
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S.t. Y min � Yt � Y max, 

U min � Ut � Umax, 

(3.13) 



where x1 E IR{.n , u1 E IR{.m , and y1 E IR{.P, are the state, input and output vectors, respectively, 

subscripts min and max denote lower and upper bounds, respectively, and the matrix pair (A,B) 

is stabilisable. 

The linear MPC problem for regulating (3.13) to the origin is posed as the following 

quadratic programming problem (from Section 3.1): 

s. t. Ym in $ Yt+klt $ Ymax, k = 1, ... , Ne, 
Umin $ Ut+k $ Umax, k = 0, 1, ... , Ne·, 
Xtlt = Xt,, 
Yt+klt 

= Cxt+klt, k ;:::: 0, 
Xt+k+11 t = Axt+klt + But+k, k ;:::: 0, 
Ut+k = Kxt+kl t, Nu $ k $ Ny, 

(3.14) 

where U� {u1, ....... , u1 + Nu -1}, Q·= Q' ;:::: 0, R = R' > 0, P;:::: 0, (Q112
, A) is detectable, Nu, Ny

, 

Ne are the input, output, and constraint horizon, respectively, such that N
y
;:::: Nu and Ne $ Ny

-1, 

and K is a stabilising state feedback gain. Eq. (3.14) is solved repetitively at each time t for the 

current measurement x1 and the vector of predicted state variables, Xt+llt •···, Xt+klt at time t+ 1, ... , 

t+k, respectively, and corresponding optimal control actions, U* = {ut, ....... , u;+k-i}is obtained. 

The input that is applied to the system is the first control action: 

and the procedure is repeated at time t+ 1, based on the new state x 1+ 1 . 

The state feedback gain K and the terminal cost function matrix P are used to guarantee 

stability for the MPC (Eq. 3.14). The stability problem of the MPC has been treated extensively; 

nevertheless we will briefly present two methods to obtain K and P. One possible choice is to set 

K=0 and P to be the solution of the discrete Lyapunov equation: 

P = A'PA +Q 

However, this solution is restricted only to open-loop stable systems, since the control action is 

stopped after Nu steps. Alternatively, one can choose K and P as the solutions of the 
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unconstrained, infinite-horizon linear quadratic regulation (LQR) problem, i.e., when 

K =-{R + B'PB} 1 B'PA, 

P =(A+ BK)'P (A+ BK)+ K'RK + Q (3.15) 

This is possibly the most popular method for obtaining the K and P matrices. Introducing the 

following relation, derived from (Eq. 3.13), 

(3.16) 

In Eq.(3.14) results in the following quadratic programming or QP problem. 

J*Cxt) = minu {½ U'HU + xfFU + ¼xfYx(t)} (3.17) 

s.t. GU � W + Ext,

h U ,. [ I I 
]' TIJ)

S 

,. mN • h f • • • • bl w ere = Ut,···· .. , Ut+Nu-i E IN. , s = u, 1s t e vector o opt1m1sat10n vana es, 

H = H' > 0, and H, F, Y, G, W, E are obtained from Q, R, and Equations (3.14) - (3.16). Thus, 

the MPC is applied by repetitively solving the QP problem (Eq. 3.17) at each time t � 0 for the 

current value of the state Xt. Due to this formulation, the solution U* of the QP is a function 

U*(x1) of the state Xt, implicitly defined by Eq.(3.17) and the control action Ut is given by: 

U1 = [I 0 ... 0] U*(xt) (3.18) 

The problem in (3.14) obviously describes the constrained linear quadratic regulation 

problem, while (3 .17) is the formulation of the MPC as a QP optimisation problem. Despite the 

fact that efficient QP_ solvers are available to solve Eq.(3.17), computing the input u1 online may 

require significant computational effort. The solution of (3.14) via multi-parametric 

programming means, which avoids the repetitive optimisation, was previously discussed in 

Section 3 .1. (Pistikopoulos et al., 2007) 
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3.3 gPROMS™ (general PROcess Modelling Systems) 

3.3.1 What is gPROMS™? 

gPROMS™ is a leading advanced process modelling environment for the process 

industries. It can be applied across many applications areas such as reaction, crystallisation, 

separation, fuel cell processes, biotechnology, batch processing, control and automation in all 

process sectors including chemicals, energy, pharmaceuticals, polymers, food, beverage, 

industrial gases, pulp, paper, minerals, mining, bio-treatment processes, and metals production. 

gPROMS's process modelling, process simulation and optimisation capabilities are used to 

generate high-accuracy predictive information for decision support in product and process 

innovation, design and operation. It is applied by major process and technology organisations 

throughout the world, as well as for research and teaching at 200 academic institutions 

worldwide. gPROMS™ has many major advantages over other modelling systems on the 

market, resulting from its modelling power and the sophistication of the models it is possible to 

create. 

gPROMS™ is an equation-oriented modelling system used for building, validating and 

executing first-principles models within a flow sheeting framework. Models are constructed in 

the gPROMS™ Model builder by writing down the fundamental chemistry, physics, chemical 

engineering, operating procedures and other relationships that govern the process or product 

behaviour. The resulting model is then validated against observed data typically, laboratory, pilot 

plant or operating data, to adjust model parameters such as heat transfer coefficients to match 

reality as closely as possible. Once a model exits, it can be solved in many different ways to 

perform many different activities; for example, steady state simulation, dynamic simulation, 

parameter estimation, model-based experiment design, integer optimisation or generation of 

linearised models for use in control and online optimisation, across the process cycle. 

gPROMS™ is the product supplied by Process Systems Enterprise Limited (PSE) which 

is one of the world's foremost providers of process modelling technology and model-based 

engineering and innovation services to the process industries and their technology suppliers. 

They can be contacted at this address: Process Systems Enterprise Limited, 6th
. Floor East, 26-28 

Hammersmith Grove, London W6 7HA, United Kingdom. 
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3.3.2 gPROMS™ Fundamentals 

gPROMS™ process models are built from a number of fundamental building blocks or 

entities. A gPROMS™ process model (for a simulation activity) consists of the following 

entities: 
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• Variable Types

• Models

• Processes

In addition: 

• To execute Optimisation activities, Optimisation entities are required.

• To execute Model Validation activities (parameter estimation and experiment design),

Parameter Estimation, Experiment Design and Experiment entities are required.

a) Variable Types

Variable types appear under the first entry in the Project Tree. In order to create your own

Variable Types, you can either select New entity .... from the Entity menu - choosing 

Variable Type as the Entity type. Once the Variable Type has been introduced, the 

following information should be provided: 

• A default value for Variables of this type. This value will be used as an initial

guess for any iterative calculation involving Variables of this type, unless it is

overridden for individual variables or a better guess is available from a previous

calculation.

• Upper and lower bounds on the values of Variables of this type. Any calculation

involving Variables of this type must give results that lie within these bounds.

These bounds can be used to ensure that the results of a calculation are physically

meaningful. Again, these bounds may be overridden for individual Variables of

this type.

• An optional unit of measurement. Users are encouraged to provide this in order

to aid Model readability.



so 

b) Models

In gPROMS™, Model Entities are the central part of any process model. A 

working TM project will contain at least one model. A Model is defined as a set of 

quantities and mathematical equations that, coupled with a set of specifications, describe 

the behaviour of a given system. 

The gPROMS™ language declaration for a basic model will typically consist of three 

parts: 

• Parameters section

• Variable section

• Equation section

i) Parameters section

The parameter section is used to declare the parameter of a Model. Parameters

are time-invariant quantities that will not, under any circumstances, be the

result of a calculation. Quantities such as physical constants (pi, R, etc),

Arrhenius coefficient and stoichiometric coefficients usually fall into this

category.

Each parameter has a unique name (identifier) by which it can be referenced.

Identifiers in the gPROMS™ language start with a letter (a- z and A - Z) and

may comprise letters, numbers (1-9) and underscore LJ. The gPROMS™

language is not case sensitive. Each parameter is also declared to be of a

certain type (e.g. integer, logical or real).

Parameter declarations may optionally include the assignment of default

values. For instance:

NoComp AS INTEGER 

NoReactions AS INTEGER DEFAULT 1 

Finally, note that the categorisation of certain quantities as parameters is 

sometimes tenuous. Designating a quantity as a parameter has the advantage 

of reducing the total number of variables in a model. However, this quantity 

can no longer be treated as an unknown in any future use of the model. 

Consider, for instance, the quantities that characterise the size and geometry 

of a vessel. From the point of view of dynamic simulation, these can be 
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viewed as parameters. However, from the point of view of steady-state design 

calculations performed with the same model, these quantities may be 

considered unknowns under certain circumstances. It may, therefore, be better 

to classify them as variables. 

ii) Variable section

The variable section is used to declare the Variables of a model. All quantities

that are calculated in Model Equations must be declared as Model Variables.

For instance:

HoldUp 

Flowln, FlowOut 

Height 

AS Mass 

AS MassFlowrate 

AS Length 

Like Parameters, Variables are always Real continuous numbers. All 

Variables must be given a type, however, Variables Types are user-defined. 

iii) Equation section

The equation section is used to declare the equations that determine the time

trajectories of the variables already declared in the Variable section. The

gPROMS™ language is purely declarative. That is, the order in which the

equations are declared is of no importance. Simple equations are equalities

between two real expressions. These expressions may comprise:

• Integer or real constants

• Parameters that have been declared in the Parameter section

• Variables that have been declared in the Variable section. The special

symbol $ preceding a variable name denotes the derivative with

respect to time of that variable (e,g. $HoldUp etc).

Similarly to most programming languages, expressions are formed by 

combining the above operands with the arithmetic operators + (addition), 

- (subtraction), * (multiplication), / (division) and A (exponentiation), as

well as built-in intrinsic functions (e.g. square root: SQRT () ). Intrinsic 

functions have the highest precedence priority, followed by the A operator 
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c) Process

and then the division and multiplication operators. The addition and 

subtraction operators have the lowest precedence. Naturally, parentheses 

may be used to alter these precedence rules as required. Finally, comments 

can be added to clarify the contents of the Model where needed. In 

gPROMS™, two types of comments are accepted. One type begins with# 

and extends to the end of the current line. The other type starts with { and 

ends with} and may span multiple lines. Moreover, comments of this type 

may be nested within one another .. 

In the gPROMS TM language, a Model is used to define the physical behaviour of a system

and it usually contains Parameter, Variable and Equation declarations. A model can

usually be used to study the behaviour of the system under many different circumstances.

Each such specific situation is called a simulation activity. The coupling of Models with

the particulars of a dynamic simulation activity is done in a Process.

A gPROMS TM Project may contain multiple Processes, each corresponding to a different

simulation activity ( e.g. simulation of plant start up, simulation of plant shutdown, etc.

Each such process must be given a different name and these will be automatically placed

in alphabetical order in the gPROMS™ Project Tree. A Process is partitioned into the

following key sections:

• The Unit section

• The Set section

• The Assign section

• The initial section

• The SolutionParameters section

• The Schedule section

i) The Unit section

The first item of information required to set up a dynamic simulation activity

is the process equipment under investigation. This is declared in the Unit

section of a Process. Equipment items are declared as instances of Models.

For example:



UNIT 

TI0I AS BufferTank 
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creates an instance of Model BufferTank, named TI0I. TI0I is described by 

the variables declared within the BufferTank Model and its time-dependent 

behaviour is partially determined by the corresponding equations. 

ii) The Set section

Before an instance of a Model can actually be used in a simulation, all its

parameters must be specified (unless they have been given default values).

This is done in the Set section of a Process. For example,

SET 

TIO I.Rho 

TIO 1. CrossSectionalArea 

Tl0I.Alpha 

I 000; # kg/m3

I·# m2

' 

10; 

sets the parameters of TIOl to appropriate values. Note that: 

• In order to refer to parameter Rho of instance T 101 of Model

BufferTank, the pathname notation Tl 01.Rho is used.

• It is recommended that pathname completion is used to help construct

full and valid pathnames correctly; this is available within all entries in

gPROMS™. Semantic errors, such as referencing a quantity in a

lower-level Model that doesn't exist, are only detected when a Model

based activity is executed.

• It is also common, particularly for composite Models, to use the

Within construct to complete pathnames

• Parameter values are set using the assignment operator (:=). In other

words, the arithmetic expression appearing on the right hand side is

first evaluated; its value is then given to the parameter appearing on

the left hand side. This is another general rule of the gPROMS™ 

language. gPROMS™ always uses the symbol = to declare the

equality of the two general expressions appearing on either side of this

symbol.
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iii) The Assign section

The set of equations resulting from the instantiation of Models declared in the

Unit section is typically underdetermined. This simply means that there are

more variables than equations. The number of degrees of freedom in the

simulation activity is given by:

Number of degrees of freedom CNooF) = Number of variables -Number of equations

For the simulation activity to be fully defined, NooF vari�bles must be 

specified as either constant values or given functions of time. Variables 

specified in this way are the input variables ( or "inputs") of this simulation 

activity. The remainder of the variables are the unknown variables, the time 

variation of which will be determined by the solution of the system equations. 

Clearly, the number of unknowns is equal to the number of available 

equations; therefore we have a "square" system of equations. 

The specification of input variables is provided in the Assign section of the 

Process. For instance: 

ASSIGN 

TlOl.Fin := 20; 

Designates the inlet flowrate as an input and assign it a constant value of 20. 

Again, in order to emphasise the assignment form of these specifications, 

input specifications use the assignment operator(:=). 

iv) The Initial section

Before dynamic simulation can commence, consistent values for the system

variables at t=0 must be determined. To this end, a number of additional

specifications are needed. These augment the system of equations that

describe the behaviour of the system and result in a square system of

equations at t=0. The solution of the latter provides the condition of the

system at t=0. Traditionally, the term "initial condition" refers to a set of

values for the differential variables at t=0. However, gPROMS ™ follows a
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more general approach in which the initial conditions are regarded as 

additional equations that hold at t=0 and can take any form. This, of course, 

allows or the traditional specification of "initial values" for the differential 

variables or, indeed, for any appropriate subset of system variables; however, 

it also makes possible the specification of much more general initial 

conditions as equations of arbitrary complexity. 

The initial section is used to declare the initial condition information 

pertaining to a dynamic simulation activity. For instance: 

INITIAL 

T 10 I.Height = 2.1; 

specifies an initial condition for the buffer tank system by stating the height of 

liquid in the tank at t=0 is 2.1. Note that, in contrast to the Setand Assign 

sections, the equality operators (=) is used here to emphasise the fact that 

initial conditions are general equations. 

An initial condition that is frequently employed for the dynamic simulation of 

process systems is the assumption of steady-state, constraining the time. 

derivatives of the differential variables to zero. In gPROMS™, this can be 

achieved by manually specifying all derivatives to be zero: For example; 

INITIAL 

T101.$Holdup = 0; 

However, this would be tedious for models with large numbers of differential 

variables, so the keyword STEADY_ ST A TE may be utilised to specify this 

initial condition, as shown below: 

INITIAL STEADY STATE 

v) The Solution Parameter Section

The user also has the option to control various aspects of model-based

activities carried out in gPROMS™ such as solver settings and output

specifications. The Solution Parameter section is used for this purpose. For

example;

SOLUTIONPARAMETERS



REPORTINGINTERV AL := 60; 

The REPORTINGINTERV AL is the interval at which result values will be 

collected during the dynamic simulation (note that it does not affect the 

accuracy of the subsequent integration in any way). For this example, an 

interval of 60 is a reasonable choice. The REPORTINGINTERV AL may be 

overridden from the simulation execution dialog. The user does not need to 

give any settings in this section. In such a case, the user will be prompted to 

enter a REPORTINGINTERV AL in dialog box. 

3.4 Dynamic Optimisation in gPROMS™

! 3.4.1 What is dynamic optimisation?

In order to introduce the various elements of the definition of the problem of dynamic 

optimisation, we consider the semi-batch reactor shown in Figure 3 .1. Two exothermic reactions 

are taking place: 

A + B-. C

B+C-► D 

where A and B are the raw materials, C the desirable product, and D the unwanted by-product. 

Feed A FeedB 

·A+B-.C

Figure 3.1 Batch Reactor 
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The reactor receives two independent inputs of pure A and B, and is cooled with cooling water 

circulating through a coil. Starting with an empty reactor, we are free to vary the in-flows of A 

and B, as well as the cooling water flowrate. For a given reactor design, our operational objective 

may be to determine the duration of the operation, and the time variation of the various material 

and energy flowrates over this duration, so as to maximise the final concentration of C. Of 

course, equipment design and resource availability usually impose certain limits within which 

our control manipulations must be maintained - for instance, there is an upper limit on the 

available flowrate of cooling water. 

In general, the design of process operating in the transient domain also leads to problems 

that are similar to- operational optimisation problems, but may have additional degrees of 

freedom. For instance, we may wish to determine the optimal geometry of the reactor in addition 

to the optimal way of operating it over time. Because of the transient nature of the underlying 

process, both the operational and design problems considered above are applications of dynamic • 

optimisation and serve to introduce some of the importance features of this problem in its most 

basic form. 

3.4.2 What is the mathematical problem? 

In this section, we provide a mathematical statement of the class of dynamic optimisation 

solved by gPROMS™ ·. 
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a) The process Model

We consider processes described by mixed differential and algebraic equations of the

form: f (x(t), x(t), y(t), u(t), v) = 0

Here x(t) and y(t) are the differential and and algebraic variables in the model while x(t)

are the time derivatives of the x(t) (i.e. x(t) = :;). u(t) are the control variables and v then

time invariant parameters to be determined by the optimisation. In the context of the batch

reactor example considered earlier, the differential variables will typically correspond to

fundamental conserved quantities (such as molar component holdups and internal energy),

while y will include various quantities related to them ( e.g. component molar

concentrations and temperature). The input flowrates of A, B and cooling water are the
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control variables u while, in the design case, the volume of the reactor acts as a time 

invariant parameter v.

b) The initial conditions

In general, gPROMS assumes that the initial t=0 condition of the system is described in

terms of a set of general non-linear relations of the form:

I (x(O), x(O), y(O), u(O), v) =:= 0

It is important to note that once we fix the time variation of the controls, u(t) and the

values of any time invariant parameters, v, the modelling equations together with the

initial conditions completely determine the transient response of the system. In practice,

we could determine this response by performing a gPROMS TM dynamic simulation.

c) The objective function

Dynamic optimisation in gPROMS™ seeks to determine:

• the time horizon, tr,

• the values of the time invariant parameters, v, and

• the time variation of the control variables, u(t), over the entire time horizon tE[0,

tr),

so as to minimise ( or maximise) the final value of a single variable z. This can be 

written mathematically as ; 

min z(t1)
tr, v,u(t),t E[O,tt]

Here the objective function variable, z is one of either the differential variables x or the 

algebraic variables y. In the context of the batch reactor example, tr would be the 

duration of the batch reaction while z would be the concentration of component C 

( either a differential or an algebraic variable, depending on the model used). The above 

form of the objective function is not restrictive as piight appear at first. In particular, it 

is worth nothing that: 

• Maximisation can be carried out as well as minimisation.

• If we wish to optimise a function 0 (x(t.r), x(tj), y(tj), u(tj), v) of several

variables instead of a single variable, we can simply add an extrn algebraic

equation to _the model:



z = 0 (x, x, y, u, v) 

The additional computational cost incurred because of this model extension is 

usually negligible. 

• lfwe wish minimise or maximise the integral of a function 0 (x, x, y, u, v) over

the entire time horizon, we can simply add the differential equation:

i = 1/J (x, x, y, u, V)

together with the initial condition:

z (0) = 0

We can easily verify that this is equivalent to:

z (tj) = J;t 1/J ( x(t), x(t), y(t), u(t), v) dt

Again, very little additional computation cost is incurred in doing this.

• Minimising the time horizon itself can be achieved by adding the equation:

i = 1.

together with the initial condition above.

Bounds on the optimisation decision variables 

In practice, the time horizon tr will often be subject to certain lower and upper bounds: 

t
min <

t 
< 

t
max 

f - f - f 

In some cases, tr will, in fact, be fixed at a given value, ti. This can be achieved by

setting tf in 
= qiax 

= ti 
As we have already seen in the batch reactor example, it is likely that the control 

variables and time invariant parameters will also be subject to lower and upper bounds. 

U min ::;; u(t) ::;; U max, 'v' t E [O, tr]

V 
min < 

V 
< 

V 
max 

- -

Other constraint types 

a) End-point constraint

59 



60 

In some applications, it is necessary to impose certain conditions that the system must 

satisfy at the end of the operation. These are called end-point constraints. For 

instance, in the batch reactor example, we may require: 

• The final amount of material in the reactor to be at certain prescribed value

We have an equality end-point constraint, e.g. w(t;) = w* where w is one of the

system variables (x or y) . .

• The final temperature to liewithin given limits.

We have an inequality end-point constraint, e.g. w min� w(t;) � w max

b) Interior-point constraints

We can also have constraints that hold at one or more distinct times, tr during the time

horizon). These are called interior-point constraints. These may be represented

mathematically as:

wr in � w(t1) � wr=

Where w is a system variable, and t1 is a given time.

We note that both interior and end-point constraints are special cases of point 

constraints. However, for convenience, gPROMS™ treats them separately. It also 

treats any constraints that have to be satisfied at the initial time t=0 as interior-point 

constraints. 

c) Path constraints

We may also have certain constraints that must be satisfied at all times during the

system operation. If these path constraints are equalities, then often they can simply

be added to the system model effectively converting one of the control variables u(t)

into an algebraic variable, y. More often, they are inequalities of the form:

w min � w(t) � W max, \it E [0, tr]
For instance, in our batch reactor example, we may require that the temperature never 

exceed a certain value so as to avoid some unwanted side-reactions that are not explicitly 

considered by the model. 



Classes of control variable profile 

For the above dynamic optimisation problem to be well defined, we need to be rather more 

specific regarding type of the variation of the control variables over time that we are willing to 

consider. For instance, we could have: 
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a) Piece-wise constant controls - these remain constant at a certain value over a certain part

of the time horizon before jumping discretely value over the next interval.

Control Variables 

I 
Time, t 

Figure 3.2 Piece-wise constant controls 

b) Piece-wise linear controls - these take a certain linear time variation over certain part of,

the time horizon before jumping discretely to a different linear variation over the next

interval.

Control Variables 

I 
1me, t 

Figure 3.3 Piece-wise linear controls 

c) Piece-wise linear continuous controls - these are similar to the piece-wise linear controls

described above, with the additional requirement that their values be continuous at the

interval boundaries.



Control Variables 

Time; t 

Figure 3.4 Piece-wise linear continuous controls 

d) Controls that vary smoothly over time - perhaps as polynomials of a given degree.

Control Variables 

___.. Time,t 

Figure 3.5 Polynomial controls 

It is important to appreciate that, in most cases, the choice of the form of the control 

variables is an engineering rather than a mathematical issue: it very much depends on the 

capabilities of the actual control systems (automatic or manual) that, we will eventually 

use to implement these controls on the real plant. For instance, piece-wise constant 

controls may often be preferable to other types as they are much easier to implement. 

Control Variable Profiles in gPROMSTM 

The dynamic optimisation facilities in gPROMS™ support piecewise-constant and piecewise­

linear controls of the types shown in Figures 3.2- 3.5 respectively. These are by far the most 

commonly encountered in practical applications. However, if necessary, it is relatively 
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straightforward to introduce several other types of control. For instance, a piecewise-linear 

continuous control of the type shown in Figure 3.4 can be defined by adding the equations: 

i = u
U=z+a. 

Where: 

z is a new differential variable with initial condition z(O) =O; 

U is a new piecewise-constant control variable to be determined by the optimisation. 

a is a new time invariant parameter representi1:g the initial value of u, to be determined by the 
optimisation. 

We note that this is equivalent to: 

(t) =a+ J; U(r)dr

which expresses that the the fact time gradient of the piecewise-linear continuous control is a 

piecewise-constant function of time. 

Also a cubic polynomial control variation of the form: 

(t) =a+ {Jt + yt2 + ot3

can be introduced by adding the following to the model equations: 

i=l 

Together with the initial condition z(O) = 0, this equation effectively defines z as time. 

U = a + {Jz + yz2 + oz3

By virtue of this equation, the variable u becomes one of the algebraic variables y to be 

determined by solving the model equations. 

The actual control variation is determined by the values of a, {J, y,and o which should now be 

treated as time invariant parameters v. (http://www.psenterprise.com/gproms/index.html) 
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CHAPTER4 

RESULTS AND DISCUSSION 

Bergman minimal model (Bergman et al., 1981) as shown schematically in Figure 2.16 

(Dua et al., 2006) was used in this study. Equations 2.23, 2.24, and 2.25 were employed to 

represent the three compartments; plasma glucose, plasma insulin, and effective insulin, 

respectively. The parameter values selected for P1, P2, P3, V 1 and n are the same as suggested by 

Fisher (1991), Dua and Pistikopoulos (2005) and Dua et al., (2006). All ,simulation and 

optimisation works were carried out using gPROMS™.

4.1 Control of Blood Glucose Level without meal disturbance

In this section, we examine means of controlling the BGL without an infusion of 

exogenous glucose as previously studied by Finan et al. (2006). 
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Figure 4.1 Transient glucose, G response to open loop step (basal) and impulse (bolus) inputs in u for 400 minutes 
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Transient responses to open loop changes in the insulin infusion rate, u were simulated in order 

to characterise the insulin to glucose dynamics of the Bergman minimal model. Responses of 

blood glucose level, BGL to open loop (basal) and impulse (bolus) inputs in exogenous insulin 

infusion rate, u is shown in Figure 4.1. The figure depicts the glucose level increases at first but 

then decreases prior to reaching its steady state. These results match with the study conducted by 

Finan et al. (2006) which use Hovorka model to simulate the glucose insulin dynamics. 

Figures 4.2 and 4.3 show the extension of the above works which incorporate one day 

graph for the glucose-insulin dynamics representation. As shown in Figure 4.2, the BGL values 
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Figure 4.2 Transient glucose response to open loop step (basal) and impulse (bolus) inputs in 

exogenous insulin infusion rate for 1440 minutes (1st
. Trial). 
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initially fluctuate around 80 to 130 mg/dL for the first 150 minutes but they tend to level off at 

120 mg/dL for sometimes before dropping drastically to 60 mg/dL at which they reach their 

steady-state conditions. The BGL values, however, increase eventually to 80 mg/dL at the end of 

the simulation work. The graph also depicts the subsequent fluctuation on exogenous insulin 

infusion rate, u as BGL values change with time prior to levelling off, firstly at u of 700 mU/Min 

followed by secondly at 900 mU/Min before they finally drop to 400 mU/Min at the end of the 

simulation work. It can be concluded that, with the proposed algorithm, it can enable us to 

control BGL values within normoglycemic conditions (except at two highest peaks) so as to 

avoid hypoglycemia or hyperglycemia to happen. Another simulation work is carri�d out with a 

slightly refined algorithm for the purpose of fine tuning the previous results as shown in Figure 

4.3. 
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As depicted in the figure, the BGL values behave in the same way as the first trial but they tend 

to increase sharply after the first drop (at 550 minutes). This behaviour has to do with the ability 

of u, maintaining the BGL values at 120 mg/dL or less (except at one point) as well as avoiding 

hypoglycemia to happen. This graph is very much similar to the graph obtained in the previous 

work using Hovorka model (Finan et al, 2006). The only major concern would be on the 

performance of the mechanical pump in which too much fluctuations tend to allow for frequent 

disruptions on its daily operation. 

4.2 Control of Blood Glucose Level (BGL) following meals 

In this section, we examine means of controlling the BGL following an infusion of 

exogenous glucose. In the model, we shall assume that oral glucose infusion commences at t=0

prior to which BGL and plasma insulin are at their fasting levels. 

Transient responses to a meal disturbance were simulated using gPROMS TM in order to 

characterise the postprandial (i.e. post-meal) glucose concentration dynamics. The first run 

simulated at 1000 minutes, incorporating breakfast at 8 am, lunch at 12 pm and dinner at 5 pm. 

The sampling period was taken every 5 minutes for a _realistic interval of current continuous 

glucose sensors. The performance of the control law under the presence of Fisher meal 

disturbances of 20, 50 and 40 g of carbohydrate intake (for breakfast, lunch and dinner, 

respectively) on the non-linear Bergman model is shown in Figure 4.4. As shown in the figure; 

the BGL values remain above 60 mg/dL and· below 120 mg/dL, thus avoiding both 

hypoglycemia and hyperglycemia conditions. These results are very much consistent with the 

previous studies by Finan et al. (2006), Dua et al. (2006), Markakis et al. (2008), Kovacs et al. 

(2008), Eren-Oruklu et al. (2009), Dua et al. (2009) and Abu-Rmileh and Gabin (2010). 
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Figure 4.4 Performance of the control law under the presence of Fisher meal dist�rbances of 20, 50 and 40g of 

carbohydrate intake (1 st
. Trial). 

Another dynamic simulation works were also carried out using gPROMS™ with a slightly 

refined algorithm so as to optimise the performance of the control law. The subsequent run was 

simulated for one day period, starting at 7 am. Breakfast, lunch and dinner were administered at 

the same amount of carbohydrate intake and time as previously mentioned. These are shown in 

Figures 4.5 and 4.6. As shown in Figure 4.5, there are three peaks which obviously indicate a 

sudden change in the BGL values in conjunction with the introduction of meal effect into the 

68 



'.'.J' 
:,:: 

120 

E' 100 
C: 

0 

'§ • 80 
c
Ol 

§ 60
u 
a, 

gi 40 
u 

::::, 

(!) 

El 20 
0 

55 
O+-+-+-+--+--+-+--+--+-+--+-+--+-+--+-+-+--+--+--+--+---t--+--+--+--+---'-1---1---1--+--< 

0 100 200 • 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

'2 

l 1000 
.s 
a, 

co 800 ct:'. 
C: 
0 

·� 600 'E 
.!: 

� 400 
C: 

(/) 
::::, 

g 200 
a, 
= 
0 

t.tl 0 

' 

0 

Time (Min) 

-

� 

0 

• •• ' . ' . 

1 DO 200 300 • 400 500 600 700 800 900 1 ODO 11 DO 1200 1300 1400 1500 
Time (Miri) 

Figure 4.5 Performance of the control law under the presence of Fisher meal disturbances of 20, 50 and 40g of 

carbohydrate intake (2nd
. Trial). 

glucose - insulin dynamics system. As can be seen from the graph, the BGL profile is almost the 

same as in Figure 4.4 before the dinner time but it tends to level off consistently at 80 mg/dL 

throughout the remaining period. These results coincide with the study carried out by Dua et al.

(2006), Finan et al. (2006), Markakis et al. (2008), Bren - Oruklu et al. (2009} and Abu-Rmileh 

and Gabin (2010). The only major difference, which is very obvious, we could find in this study 

in comparison with the other previous works is that the value of exogenous insulin infusion rate, 

u is very much on the higher side. This could be due to different diabetic models were employed

as well as inconsistent units were used in the parameters which, in tum, result in one decimal 
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point deviation of the u values. It can also be concluded that the non-linear Bergman model 

needs to be further refined by using consistent units so as to avoid complications and difficulties 

if we were to incorporate these proposed algorithms into microchips for future work. 

Figure 4.6 shows another dynamic simulation work carried out with different algorithm 

but maintaining the same procedure as previously mentioned. As can be seen from the figure, the 

BGL profile is almost similar from the previous algorithm but more than three peaks are 

occurred during the simulation. This could be due to the fact that the u values are kept initially at 

lower sides which subsequently result in sudden jump on the BGL values. This result, however, 

keeps the BGL values in normoglycemic conditions throughout the day. It conseqµently proves 
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that the proposed algorithm can be easily and cheaply installed in the microchips so as to control 

the BGL for the use of diabetic patient in the near future. 
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CHAPTERS 

CONCLUSION 

o A new computer algorithm based on multi-parametric programmmg technique and

model-based predictive control (mp-MPC) has been successfully developed to control the blood 

glucose level for type 1 diabetes. The non-linear Bergman minimal model is employed to 

represent the glucose-insulin dynamics as it takes into consideration the physi0logical aspect of 

the diabetic patient. In the development of the algorithm, both controls of blood glucose 

concentration with and without meal disturbances have been carried out so as to compare the 

results obtained with the previous studies. 

The proposed algorithm has also been successfully simulated and optimised using 

gPROMS® to control the blood glucose level for the period of one day for the sake of simplicity. 

It is found that the results obtained are very consistent with the previous works. However, the 

only major difference we could find in this study in comparison with the other previous works is 

that the value of exogenous insulin infusion rate, u is on the higher side. This could be due to 

different diabetic models were employed as well as inconsistent units were used in the 

parameters which, in turn, result in one decimal point deviation of the u values. It can be 

concluded that the non-linear· Bergman model needs to be further refined by using consistent 

units so as to avoid complications and difficulties in its implementation. It is also hoped that this 

model-based algorithm can be easily installed in the form of microchips as part of a controller in 

the integrated insulin delivery systems. 

It is high time for a diabetic patient to be able to manage their insulin daily intake in safe 

and convenient manner. Thus integrated insulin delivery systems, which consist of biosensor, 

microchips controller and micro-pump can be bio-medically devised to replace the current 

injection or finger prick methods. This would require intensive researches to be carried out 

especially on clinical level so as to benefit the diabetic patient in near future. 
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