UNIVERSITI TEKNOLOGI MARA

THE INFLUENCE OF GEOMETRY SPECIMENS ON MILD STEEL IN SLOW COOLING PROCESS

MUHAMMAD AMAR ZULHAIKAL BIN ZAMRE

Diploma

March 2022

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Mr. Ts. Mohd Arzaimiruddin Ariffin

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulilah.

ABSTRACT

This project presents the influence of geometry specimens in the slow cooling process in heat treatment on the mild steel. Mild steel is a widespread steel grade used in the engineering world. The geometry used in the experiment is cylinder and cuboid. By applying process annealing heat treatment, this heat treatment can soften the mild steel's mechanical properties by changing its microstructure. This project aims to observe the microstructure of the specimens on the mild steel in the annealing process and study the hardness of the specimens by using vickers hardness testing machine. The experimental work begins with listing the materials and equipment used in the project. Next is drawing the design of the specimens, which are cylinder and cuboid. After fabrication of specimens, the specimens were heated in the furnace using process heat treatment at 700°C. The heating stage is from room temperature until the 700 °C meets. Then, the soaking hour is 2 hours. Following, the slow cooling process in furnace temperature in 20 hours. The specimens were later ground with sandpapers, polished, and etched to obtain a mirror-like surface to capture the microstructure image under a microscope. The specimens then evaluate the vickers hardness test to get a hardness result using the vickers hardness testing machine. The result shows that the hardness values of the mild steel decrease due to the presence of ferrite structure and disappearance of the pearlite by proving with vicker hardness test, a diamond indentation on the heat treated specimen surface bigger than as-cast. The bigger the diamond indentation on the surface material, the softer the material. In the end, research successfully to observe the metallurgical microstructure of the mild steel specimens after the annealing process and to evaluate the hardness of the specimens by using Vickers hardness testing machine.

TABLE OF CONTENTS

CONFIRMATION BY SUPERVISOR

AUTHOR'S DECLARATION

ACKNOWLEDGEMENT

TABLE OF CONTENTS

LIST OF ABBREVIATIONS

CHAPTER ONE : INTRODUCTION

Background of Study

Problem Statement

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

1.1

1.2

Page

ii

iii

iv

v

vi

ix

Х

xiii

1

1

2

3 1.3 Objectives 1.4 Scope of Work 3 1.5 Significance of Study 4 **CHAPTER TWO : LITERATURE REVIEW** 5 5 2.1 Introduction 5 2.2 Material 5 2.2.1 Low Carbon Steel 2.2.2 Mild Steel 6 2.3 Geometry of material 7 7 2.4 Heat treatment 2.4.1 Stages of heat treatment 10 2.4.2 Annealing 11 Purposes of annealing 2.4.3 12 2.4.4 Stages of Annealing 13 2.4.5 Process (sub-critical/recrystallization) annealing 15 2.4.6 Effect of Annealing on properties 16

2.5	Testing on mechanical properties	17
	2.5.1 Microscope the microstructure	17
	2.5.2 Vicker hardness test	18
СНА	APTER THREE : METHODOLOGY	19
3.1	Introduction	19
3.2	Materials and equipments	20
3.3	Specimen's description	
3.4	Drawing design of the specimens	27
	3.4.1 Drawing cylinder and cuboid specimen	27
3.5	Pre-heat treatment specimens preparation	30
	3.5.1 Obtain the specimens	31
	3.5.2 Fabrication the specimens	32
	3.5.3 Complete fabricated specimens	34
3.6	Heat Treatment Process	35
	3.6.1 Process Annealing	37
3.7	Post-heat treatment specimens preparation	40
	3.7.1 Grind	41
	3.7.2 Polish	43
	3.7.3 Etch	45
3.8	Testing mechanical properties	46
	3.8.1 Observe the microstructure on the specimen	46
	3.8.2 Vicker hardness testing on specimen	48
CHA	APTER FOUR : RESULTS AND DISCUSSION	51
4.1	Introduction	51
4.2	Microstructure Analysis	52
4.3	Vicker hardness test analysis	55
СНА	APTER FIVE : CONCLUSION AND RECOMMEN	NDATIONS 59
5.1	Conclusions	59
5.2	Recommendations	59